Panax quinquefolium hairy root extracts and their effect in connections with antibiotics against pathogenic bacteria – preliminary study

Ewa Kochan

Abstract


 

The aim of the present study was to determine the level of ginsenosides in extracts from hairy root A, B, G clones of Panax quinquefolium and their action with antibiotics against clinical bacterial isolates. The content of ginsenosides (the key biologically active compounds) were determined in tested extracts using HPLC. The activity of extracts with antibiotics was established by micro-dilution broth method. Total triterpene saponin content was 14.68, 14.32 and 10.07 mgg-1 d.w. for root culture clones B, A and G, respectively. Our research indicates that the addition of extracts mainly from B and G clone hairy root cultures to antibiotics allow to reduce the ampicillin and tetracycline effective concentration respectively against Enterococcus faecalis and both Escherichia coli and Acintobacter baumannii.



Keywords


ginseng, ginsenosides, connection with antibiotic

Full Text:

PDF

References


REFERENCES

Battinelli L.,. Mascellino M.T., Martino M.C., Lu M., Mazzanti G. 1998. Antimicrobial activity of ginsenosides Pharin Pharmacol Comniun. 41:1-413.

Borges A., Abreu A.C., Dias C., Saavedra M.J., Borges F., Simões M. 2016. New perspectives on the use of phytochemicals as an emergent strategy to control bacterial infections including biofilms. Molecules 21: 877. doi:10.3390/molecules21070877

Chen Ch., Chiou W., Zhang J. 2008. Comparison of the pharmacological effects of Panax ginseng and Panax quinquefolium. Acta Pharmacol Sin 29 (9): 1103–1108.

CLSI, Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically, Approved Standard, 10th ed., CLSI document M07-A10. Clinical and Laboratory Standards Institute, 950 West Valley Road, Suite 2500, Wayne, Pennsylvania 19087, USA, 2015.

Ferri M., Ranucci E., Romagnoli P., Giaccone V. 2017. Antimicrobial resistance: a global emerging threat to public health systems. Crit Rev Food Sci Nutr. 2, 57(13): 2857-2876. doi: 10.1080/10408398.2015.1077192

Gamborg O.L., Miller R.A., Ojima K. 1968. Nutrient requirements of suspension cultures of sojabean root cells. Exp Cell Res. 50: 151-158.

Golkar Z., Bagazra O., Pace D.G. 2014. Bacteriophage therapy: a potential solution for the antibiotic resistance crisis. J Infect Dev Ctries.13, 8(2):129–136.

Gould I.M., Bal A.M. 2013. New antibiotic agents in the pipeline and how they can overcome microbial resistance. Virulence 4(2): 185–191.

Kim Y.J., Zhang D., Yang D.C. 2015. Biosynthesis and biotechnological production of ginsenosides. Biotechnol Adv. 33, (6) Part 1:717-735.

Kristich C.J., Rice L.B., Arias C.A. 2014. Enterococcal Infection—Treatment and Antibiotic Resistance. 2014 Feb 6. In: Gilmore MS, Clewell DB, Ike Y, et al., editors. Enterococci: From Commensals to Leading Causes of Drug Resistant Infection [Internet]. Boston: Massachusetts Eye and Ear Infirmary.

Kochan E., Szymczyk P., Kuźma Ł., Szymańska G. 2016. Nitrogen and phosphorus as the factors affecting ginsenoside production in hairy root cultures of Panax quinquefolium cultivated in shake flasks and nutrient sprinkle bioreactor. Acta Physiol Plant. 38:149.

Kochan E., Szymańska G., Szymczyk P. 2014. Effect of sugar concentration on ginsenoside biosynthesis in hairy root cultures of Panax quinquefolium cultivated in shake flasks and nutrient sprinkle bioreactor. Acta Physiol Plant. 36:613–619.

Kochan E., Wasiela M., Sienkiewicz M. 2013. The production of ginsenosides in hairy root cultures of American Ginseng, Panax quinquefolium L. and their antimicrobial activity. In Vitro Cell Dev Biol Plant. 49(1): 24–29. doi:10.1007/s11627-012-9469-5

Kochan E., Królicka A., Chmiel A. 2012. Growth and ginsenoside production in Panax quinquefolium hairy roots cultivated in flasks and nutrient sprinkle bioreactor. Acta Physiol Plant. 34:1513–1518.

Kochan E., Kołodziej B., Gadomska G., Chmiel A. 2008. Ginsenoside contents in Panax quinquefolium organs from field cultivation. Z Naturforsch. C, 63:91-95.

Lunga P.K., Qin X.J., Yang X.W., Kuiate J.R., Du Z.Z., Gatsing D. 2014. Antimicrobial steroidal saponin and oleanane-type triterpenoid saponins from Paullinia pinnata. BMC Complement Altern Med. 4:369.

Maleki M.H., Sekawi Z., Soroush S., Azizi-Jalilian F., Asadollahi K.H, Mahammadi S., Emaneini M., Taherikalani M. 2014. Phenotypic and genotypic characteristics of tetracycline resistant Acinetobacter baumannii isolates from nosocomial infections at Tehran hospitals. Iran J Basic Med Sci. 17:21-26.

Mallol A., Cusidò R.M., Palazòn J., Bonfill M., Morales C., Piňol M.T. 2001. Ginsenoside production in different phenotypes of Panax ginseng transformed roots. Phytochem. 57: 365–371.

Marothi Y.A., Agnihotri H., Dubey D. 2005. Enterococcal resistance – An overview. Indian J Med Microb. 23 (4):214-219.

Mathur A., Ganwar A., Mathur A.K., Verma P., Uniyal G.C., Lal R.K. 2010. Growth kinetics and ginsenosides production in transformed hairy roots of American ginseng—Panax quinquefolium L. Biotechnol Lett. 32:457–461.

Mishra A.P., Saklani S., Sharifi-Rad M., Iriti M., Salehi B., Maurya V.K., Rauf A., Milella L., Rajabi S., Baghalpour N., Sharifi-Rad J. 2018. Antibacterial potential of Saussurea obvallata petroleum ether extract: a spiritually revered medicinal plant. Cell Mol Biol. (Noisy-le-grand) 64(8):65-70.

Munita J.M., Arias C.A. 2016. Mechanisms of Antibiotic Resistance. Microbiol Spectr 4(2),10.1128/microbiolspec.VMBF-0016-2015 doi:10.1128/microbiolspec.VMBF-0016-2015

Rajendran P, Rengarajan T, Thangavel J, Nishigaki Y, Sakthisekaran D, Sethi G, Nishigaki, I (2013) The Vascular endothelium and human diseases. Int J Biol Sci 9, 9(10): 1057-69. doi: 10.7150/ijbs.7502. eCollection 2013.

Rossolini G.M., Arena F., Pecile P., Pollini S. 2014. Update on the antibiotic resistance crisis. Clin Opin Pharmacol. 18:56-60.

Schmidt S., Heimesaat M.M., Fischer A., Bereswill S., Melzig M.F. 2014. Saponins increase susceptibility of vancomycin-resistant enterococci to antibiotic compounds. Eur J Microbiol Immunol (Bp).4 (4):204–212.

Schroeder M., Brooks B.D., Brooks A.E. 2017. The complex relationship between virulence and antibiotic resistance. Genes (Basel.) 8(1): 39. doi: 10.3390/genes8010039.

Sengupta S., Chattopadhyay M.K., Grossart H.P. 2013. The multifaceted roles of antibiotics and antibiotic resistance in nature. Front Microbiol. 4:47.

Sękowska A., Ibsz-Fijałkowska A., Gołdyn K., Gospodarek E. 2009. Susceptibility of Enterobacteriaceae rods to selected tetracyclines. Med Dośw Mikrob. 61(4): 321-326.

Sharifi-Rad J., Tayeboon G.S., Niknam F., Sharifi-Rad M., Mohajeri M., Salehi B., Iriti M., Sharifi-Rad M. 2018. Veronica persica Poir. extract - antibacterial, antifungal and scolicidal activities, and inhibitory potential on acetylcholinesterase, tyrosinase, lipoxygenase and xanthine oxidase. Cell Mol Biol. 64: 50–56. doi: 10.14715/cmb/2018.64.8.8.

Sharifi-Rad J., Van Belkum A., Fallah F., Sharifi-Rad M. 2016. Rising Antimicrobial Resistance in Iran Der Pharmacia Lettre. 8 (7): 31-33.

Sharifi-Rad M., Nazaruk J., Polito L., Morais-Braga M.F.B., Rocha J.E., Coutinho H.D.M., Salehi B., Tabanelli G., Montanari C., Del Mar Contreras M., Yousaf Z., Setzer W.N., Verma D.R., Martorell M., Sureda A., Sharifi-Rad J. 2018. Matricaria genus as a source of antimicrobial agents: from farm to pharmacy and food applications. Microbiol Res. 215:76-88. doi: 10.1016/j.micres.2018.06.010.

Sharifi-Rad M., Roberts T.H., Matthews K.R., Bezerra C.F., Morais-Braga M.F.B., Coutinho H.D.M., Sharopov F., Salehi B., Yousaf Z., Sharifi-Rad M., Del Mar Contreras M., Varoni E.M., Verma D.R., Iriti M., Sharifi-Rad J. 2018. Ethnobotany of the genus Taraxacum-phytochemicals and antimicrobial activity. Phytother Res. 32(11):2131-2145. doi: 10.1002/ptr.6157

Sharifi-Rad M., Mnayer D., Morais-Braga M.F.B., Carneiro J.N.P., Bezerra C.F., Coutinho H.D.M., Salehi B., Martorell M., Del Mar Contreras M., Soltani-Nejad A., Uribe Y.A.H., Yousaf Z., Iriti M., Sharifi-Rad J. 2018. Echinacea plants as antioxidant and antibacterial agents: from traditional medicine to biotechnological applications. Phytother Res. 32(9):1653-1663. doi: 10.1002/ptr.6101

Simões M., Bennett R.N., Rosa E.A. 2009. Understanding antimicrobial activities of phytochemicals against multidrug resistant bacteria and biofilms. Nat Prod Rep. 26(6): 746-57. doi: 10.1039/b821648g

Snow Setzer M., Sharifi-Rad J., Setzer W.N. 2016. The search for herbal antibiotics: an in-silico investigation of antibacterial phytochemicals. Antibiotics (Basel) 5(3) pii: E30. doi: 10.3390/antibiotics5030030.

Sung W.S., Lee D.G. 2008. The combination effect of Korean red ginseng saponins with kanamycin and cefotaxime against methicillin-resistant Staphylococcus aureus. Biol Pharm Bull. 31(8):1614-1617.

Wang L., Yang X., Yu X., Yao Y., Ren G. 2013. Evaluation of antibacterial and anti-inflammatory activities of less polar ginsenosides produced from polar ginsenosides by heat -transformation. J Agric Food Chem. 61:12274-12282.

Washida D., Shimomura K., Nakajima Y., Takido M.K.S. 1998. Ginsenosides in hairy roots of Panax hybrid. Phytochemistry 49(8): 2331–2335.

Washida D., Shimomura K., Takido M., Kitanaka S. 2004. Auxins affected ginsnoside production and growth of hairy roots in Panax hybrid. Biol Pharm Bull. 27:657–660.

Woo S.S., Song J.S., Lee J.Y., In D.S., Chung H.J., Liu J.R., Choi D.W. 2004. Selection of high ginsenoside producing ginseng hairy root lines using targeted metabolic analysis. Phytochem. 65:2751–2761.

Wright G.D. 2014. Something new: revisiting natural products in antibiotic drug discovery. Can J Microbiol. 60(3):147–154.

Xue P., Yao Y., Yang X., Feng J., Ren G. 2017. Improved antimicrobial effect of ginseng extract by heat transformation. J Ginseng Res. 42(2):180-187.




DOI: http://dx.doi.org/10.17951/c.2018.73.1.7-17
Date of publication: 2019-06-10 12:48:55
Date of submission: 2019-01-23 16:58:32


Statistics


Total abstract view - 1801
Downloads (from 2020-06-17) - PDF - 0

Indicators



Refbacks

  • There are currently no refbacks.


Copyright (c) 2019 Ewa Kochan

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.