New characterizations of \(\mathcal{N}(p,q,s)\) spaces on the unit ball of \(\mathbb{C}^n\)

Athanasios Beslikas

Abstract


In this note we provide Holland-Walsh-type characterizations for functions on the \(\mathcal{N}(p,q,s)\) spaces on the unit ball for specific values of \(p\ge 1\). Characterizations for the holomorphic function spaces \(\mathcal{N}(p,q,s)\) were studied extensively by B. Hu  and S. Li.

Keywords


\(\mathcal{N}(p,q,s)\)-type spaces; Holland–Walsh-type characterization; Bergman pseudometric

Full Text:

PDF

References


Holland, F., Walsh, D., Criteria for membership of Bloch space and its subspace BMOA, Math. Ann. 273 (1986), 317–335.

Hu, B., Li, S., N(p, q, s)-type spaces on the unit ball of Cn, arXiv:1609.00957v2, 2017.

Hu, B., Li, S., N(p, q, s)-type spaces in the unit ball of Cn (III): Various characterizations, Publ. Math. Debrecen 97 (2020), 41–61.

Li, S., Wulan, H., Zhu, K., A characterization of Bergman spaces on the unit ball of Cn II, Canadian Math. Bull. 55(1) (2011), 146–152.

Li, S., Wulan, H., Characterizations of Qp spaces in the unit ball of Cn, J. Math. Anal. Appl. 360 (2009), 689–696.

Michalska, M., Nowak, M., Sobolewski, P., Mobius invariant Besov spaces on the unit ball of Cn, Ann. Univ. Mariae Curie-Skłodowska Sect. A 65(2) (2011), 87–97.

Pavlovic, M., On the Holland-Walsh characterization of Bloch functions, Proc. Edinburgh Math. Soc. 51 (2008), 439–441.

Rudin, W., Function Theory in the Unit Ball of Cn, Springer-Verlag, New York, 1980.

Stroethoff, K., The Bloch space and Besov space of analytic functions, Bull. Austral. Math. Soc. 54 (1996), 211–219.

Zhu, K., Spaces of Holomorphic Functions in the Unit Ball, Springer-Verlag, New York, 2005.




DOI: http://dx.doi.org/10.17951/a.2024.78.1.17-26
Date of publication: 2024-07-29 22:47:27
Date of submission: 2024-07-11 14:06:57


Statistics


Total abstract view - 273
Downloads (from 2020-06-17) - PDF - 119

Indicators



Refbacks

  • There are currently no refbacks.


Copyright (c) 2024 Athanasios Beslikas