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Abstract—Evidence-based medicine can be effective only if 

constantly tested against errors in medical practice. Clinical 

record database summarization supported by a machine allows 

allow to detect anomalies and therefore help detect the errors in 

early phases of care. Summarization system is a part of Clinical 

Decision Support Systems however it cannot be used directly by 

the stakeholder as long as s/he is not able to query the clinical 

record database. Natural Query Languages allow opening access 

to data for clinical practitioners, that usually do not have 

knowledge about articial query languages. Results: We have 

developed general purpose reporting system called Ask Data 

Anything (ADA) that we applied to a particular CDSS 

implementation. As a result, we obtained summarization system 

that opens the access for these of clinical researchers that were 

excluded from the meaningful summary of clinical records stored 

in a given clinical database. The most significant part of the 

component - NQL parser - is a hybrid of Controlled Natural 

Language (CNL) and pattern matching with a prior error repair 

phase. Equipped with reasoning capabilities due to the intensive 

use of semantic technologies, our hybrid approach allows one to 

use very simple, keyword-based (even erroneous) queries as well 

as complex CNL ones with the support of a predictive editor. By 

using ADA sophisticated summarizations of clinical data are 

produced as a result of NQL query execution. In this paper, we 

will present the main ideas underlying ADA component in the 

context of CDSS. 

Keywords— Clinical Decision Support System (CDSS), Natural 

Query Language (NQL) 

I.  INTRODUCTION 

We define here Clinical Decision Support System (CDSS) 

after Sim et al.[1] as: “a software that is designed to be a direct 

aid to clinical decision-making, in which the characteristics of 

an individual patient are matched to a computerized clinical 

knowledge base and patient-specific assessments or 

recommendations are then presented to the clinician or the 

patient for a decision”. If clinical knowledge base of the CDSS 

“(...) is derived from and continually reflects the most up-to-

date evidence from the research literature and practice-based 

sources.” We say that it is Evidence-Adaptive CDSS.  
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Given large number of patient records it is the researcher 

who discovers correlations and constructs hypotheses. After the 

theory is statistically tested and published in a literature, 

systematically developed statements designed to assist medical 

practitioners and patients with decisions about appropriate 

health-care for specific clinical circumstances [2] are known as 

Clinical Practice Guidelines. Due to the fact that they are very 

formal, the automation of a decision support can be 

implemented and the computer can make use of patients' 

clinical data, follow its own algorithm, and present the 

information relevant to the current clinical situation [3]. In other 

words, basing on the guidelines automated deductive reasoning 

tools helps a therapist to provide evidence based diagnosis(4) 

that is logically followed by a (6) therapy (see Figure 1). 

 

Fig. 1 Knowledge and functionality involved in the use of of CDSSs 

to support evidence- based medicine (after Sim et al. [1]) 

Literature and Clinical Practice Guidelines are the main 
inputs for evidence-based CDSS, however for optimizing health 
outcomes, local-practice analysis is often required too. Local 
circumstances like the level of maturity, differences in 
education, local policy or organizational problems can impact 
quality of health-care even if made in evidence-based way. To 
detect these problems it is required to have tools and methods 
that can provide automatic (7) summarization of knowledge in 
form of reports that retains the most important points), that after 
interpretation can help to detect local-practice problems. 
Moreover, summarization can result in general local practices 
that will implement local practice-based evidence and ultimately 
can give source material for a new version clinical practice 
guideline. On figure 2 involved actors are shown with focus on 
the Summarization use-case. 

 

Fig. 2 Clinical data summarization use case 

Summarization operates on Computer-Based Patient Record 
database (PR-DB) and is governed by a set of tools that allows 
the creation of a potentially unlimited number of machine-
generated, data-driven reports, which are calculated by a 
machine as a response to queries. To create a query to PR-DB it 
is required to have both: the ability to use language, and 
knowledge about the structure of the underlying data, and as a 
consequence, often summarization tools cannot be used directly 
by the interested stakeholders. In other words: it is desired by the 
stakeholder to have the ability to examine the data in a query-
result loop, where the query is tailored within an interactive 
process that does not require any large prior learning and 
preparation. This way of querying data is supported by Natural 
Query Language (NQL). 

The typical architecture of a NQL oriented solution consists 
of three components: (1) an NQL-based user query interface that 
is also responsible for the transformation of a natural language 
query into a formal, machine-readable database query, (2) an 
underlying database system that in case of CDSS, is PR-DB and 
(3) a textual or graphical reporting component that presents the 
results of database computations. 

II. CLINICAL DECISION SUPPORT SYSTEM APPLICATION FOR 

GIST CANCER TREATMENT 

Cancer treatment is one of the area where CDSS 

applications can help physicians performing evidence based 

diagnosis and therapy due to strict recommendations and the 

need for deciding if patients are eligible to enter clinical trial. 

The Clinical Decision Support System application for Gist 

Cancer (GIST-CDSS) is a pilot study devoted to 

Gastrointestinal Stromal Tumors (GIST). Oncology is a field 

where recommendations are well defined and studied and 

where the quality of the clinical data needs to allow for more 

complex analysis of these data. Strict formalization of the 

domain knowledge produces consistent data that can be reused 

for clinical studies. 
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Fig. 3 CDSS 

In the GIST-CDSS application (Figure 3) we have modelled 

the oncological history of a patient to ensure that all the data 

entering into the application is stored consistently. Furthermore, 

we were able, together with the domain expert, to model 

recommendations for the physician that are reasoned depending 

on the form and on the patient history.  

In this paper we present specific component of GIST-CDSS 

that supports practice-based evidence due to the possibility of 

automatic summarization via NQL. 

The application is currently being tested in the Maria 

Sklodowska-Curie Memorial Cancer Center and Institute of 

Oncology in Warsaw. 

A. Architecture of ADA GIST-CDSS component 

Ask Data Anything (ADA) is a NQL system developed by 

us. It is a general purpose web-browser based application but 

after tight integrated within GIST-CDSS it becomes to be its 

core component. 

The ADA User Interface (UI) allows a NQL query to be 

entered and executed with the support of a predictive editor. 

The result-set of the query execution is presented on a wide 

range of reports including tables, charts and maps (Figure 4). 

 
Fig. 4 ADA screen-shot from query execution result-set presented on 

a map. 

III. THE ADA NQL QUERY LANGUAGE 

The ADA NQL is a language developed by us to support the 

users of our ADA system. It is general purpose language, 

however it can be easily tailored to a specific domain (like here: 

GIST oncology) with appropriate domain-specific ontology. 

ADA uses On-Line Analytical Processing (OLAP) cube 

approach together with a combination of formal logic and 

statistical analysis to extract dimensions from the data and to 

expose the dimensions through a natural query language based 

interface. In this approach the ontology of a given domain and 

the metadata coming from databases are merged together, 

therefore it is tightly related to the data and ontology that the 

user is currently using. The user can write a natural language 

query while underneath, the query is matched to a more formal 

CNL, which is  finally translated to a query to the underlying 

PR-DB. 

A. The ADA NQL syntax 

ADA NQL queries should follow grammar presented on 

Figure 5 and if they do not stick to the grammar, parser first 

tries to tailor them accordingly. Usually a query starts with an 

operation (1) specification (sum, average,...) followed by 

(possibly more than one) dimension(2) specification. The 

dimension specification(s) is (are) the only required 

grammatical part(s), all others are optional. The next part of a 

query defines the subsetting(3) of the data represented by the 

dimension, by which it is possible to  filter the results. The 

fourth part is the aggregation(4) which allows data to be 

grouped in subsets. Finally, it is possible to specify the expected 

visualization(5) type (that can be changed later-on). 

Operation. An Operation (optional) is an action we can 

perform on data to get the desired information: sum, average, 

count, maximum and minimum. 

 
Fig. 5 Syntax for ADA NQL 

Dimension. Every action requires at-least one Dimension 

specification to act on. A Dimension is assigned with a type 

inferred by parsing a subset of the data together with the 

information modelled in the supporting ontology. Currently, the 

type supported by the ADA NQL language are: numerical, 

date/time and text, for the types understood directly from the 

data and: location/geolocation, latitude and longitude, 

hierarchical (text dimension defined in the supporting 

ontology that can have super concepts grouping the values (e.g. 

infectious-disease for a column with diseases,...) and row 

(dimensions that are defined in the supporting ontology and 

represent data from multiple columns in a single row). 

Operations and types are matched in the parser to check that 

the query makes sense (e.g. “Sum Patient” where patient is a 

dimension with Text values inside is not allowed but “Sum 

Some-Row” where Some-Row is a row that contains a 

numerical dimension is allowed). 
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The query language allows also the use of: 

• symbols - defined in the supporting ontology that are 

evaluated to concepts, mainly used for subsetting and 

grouping, described later 

• literal values (e.g. Contract 123, Rome,...) used for 

subsetting  

these components (as for the dimensions) are dependent on 

the dataset currently loaded. 

Subsetting. The subsetting part of the query can be used to 

define the filters that the user wants to apply to his/her query. 

The general syntax is (Dimension, Relation, Data) where as 

described before, the Relation and the Dimension are matched 

by the dimension type (thus Dimension > 4 is allowed only for 

Numerical dimensions). In this part of the query, it is also 

possible to use “in” constraints. After the in constraint, we 

expect an entity declared in the ontology (e.g. location “city”, 

class of abstractions like “infectious disease”) or the content of 

some column. 

Example. Lets consider the following query: Average age of 

patient that has-tumour-size greater-than 10 and is not a 

diabetic and-or is a paracetamol-tolerant on a piechart. This 

query contains the following complex expression: “patient that 

has-tumour-size greater-than 10 and is not a diabetic and-or is 

a paracetamol-tolerant” that evaluates into DL concept 

expression: patient ⊓((∋have-tumour-size>10 ⊓ ¬diabetic) 

⊔paracetamol-tolerant) 

During reasoning process, that takes place in Ontology 

Management System, we obtain set of instances of the 

aforementioned complex concept expression: (Patient-

1,Patient-2,...) that are then injected into final SQL query: 

 
Fig. 6 Subsettings Syntax 

Select avg(age) from PR_DB 

where fish in (Patient-1,Patient2,…) 

Subsetting by date is very expressive, for example the user 

can write: “from year 2015 to/until year 2016”, “from July 2015 

to/until September 2015”, “from 1st of July 2015 to/until 23rd 

of October 2015”, “from 07/01/2015 to/until 08/02/2015” or 

“from 07/01/2015 12:23 to/until 08/02/2015 09:22”. 

Aggregation. Aggregation is the action of grouping the 

result using one of the Dimensions and/or entities which were 

defined in the ontology; the syntax for aggregation is described 

on Figure 7 with “by” together with dimension, location (i.e. 

city, country), and time period (year, month, day, date). 

Multiple aggregations are allowed (e.g. by country and by day). 

Some aggregations require operations and others do not (e.g. by 

day can be used with or without operations on the dimension, 

while by country needs an operation). 

Outputs. It is possible to specify in the query language the 

output on which the query result should be shown. ADA 

currently support following types of outputs: table, histogram, 

stacked-bar, map, piechart, line or timeline. After the query 

is parsed, the parser decides which of the outputs are allowed 

depending on the type of dimensions that will be returned. 

IV. EVALUATION 

A. Advantages and disadvantages of ADA NQL 

To evaluate our system, firstly we tried to place it in the 

spectrum of well-known advantages and disadvantages of NQL 

(see [4]) 

 
Fig. 7 Aggregation Syntax 

1) Advantages 

• Using ADA NQL does not require prior learning of a 

database query language like SQL or SPARQL. 

Following SQL query that uses embedded SPARQL 

and is aimed to select average value of age of diabetic 

patient from a given PR-DB in SQL+SPARQL has a 

form of: 
select avg(age)from PR_DB where 

product in ( 

select distinct ?x { 

?x rdf:type ns:patient. 

?x rdf:type ns:diabetic 

}) 

 

It is required to learn how to construct valid 

SQL/SPARQL queries to execute them on top of the 

given dataset. The same query in ADA NQL has a 

form: “Average age by a patient in diabetics”. This 

form do not require extensive prior learning - the user 

writes it in English. 

• ADA NQL is simple but expressive. E.g.: 

form-based GUI presented on a left side of a Figure 8 

contain multiple fields that need to be correctly filled 

making the overall process of querying the database a 

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 13/02/2026 21:24:30

UM
CS



complex task. To enter the same into single ADA NQL 

query is much easier with predictive editor: entering 

“Average age by patient in diabetics ...” and then 

select one of the appearing options to continue the 

query. 

• Arbitrary complex queries can be not possible to be 

expressed in form-based UI. E.g.: a left side of a 

Figure 8 presents an UI setup for the application that 

executes a query equivalent to the following ADA 

NQL query: “Average age by patient in diabetics ...” 

however with ADA NQL by extending this query with 

additional “... and paracetamol-tolerant” we easily 

can make the query arbitrary complex. Only generic, 

Tree-View based, dynamic UI (presented on the right 

side of Figure 8), that for complex queries can 

potentially occupy more space that is available on any 

computer screen allows one to specify arbitrary 

complex queries. 

 
Fig. 8 Example of form based UI for database queries 

• ADA is fault-tolerant, providing the user with a result-

set together with an information about what is 

“understood” as a query (right side of Figure 9). For 

example the following erroneous ADA query: “avrage 

agee inpatnts by municipality on map” is rewritten 

into: “average age in patients by municipality on a 

map”, prior being evaluated by the ADA engine. 

2) Disadvantages 

Now we explain how ADA NQL approach reduces common 

NQL disadvantages. 

• ADA provides many hints for an inexperienced user, 

that allow her/him to understand a linguistic coverage 

of the ADA NQL. One of them is a predictive editor 

(left side of Figure 9). Predictive editor provides the 

user with kind of rails during the query construction 

process. It actively suggests continuation of the query 

based on current position and context (loaded dataset 

and ontology). 

• ADA provides the user with an “understood” query 

together with a result-set (right side of Figure 9). The 

understood query is colorized and extended with 

explanations to explain why some part has been added 

or modified making easier to understand the obtained 

result-set - and ultimately the problems within an 

entered query. By comparing the result-set with 

differences between “entered” and “understood” query 

user is able to learning how to specify the “correct” 

queries. 

• ADA learning loop, described previously, 

communicates to the user the abilities of the ADA so 

even if the user ask questions that include judgements 

and beliefs the “understood” query will explain 

him/her that parts of the query were dropped. 

B. NQL Parser Evaluation 

We can distinguish three general approaches to the NQL: 

1. keyword based, which allows for free writing similar 

to the full-text search approach, but supports only very 

basic queries, 

2.  patten based, which detects common query patterns 

and generates responses based on a set of rules, and 

therefore allows for more complex queries but limited 

in the number of rules, 

3. grammar based, which requires strict grammar and 

syntax followed by a structural/predictive editor as it 

is hard for the inexperienced user to enter a 

grammatically valid query, but once entered it can be 

very complex, deep and meaningful. 

In each case the NQL query is rewritten into the underlying 

database query language but each of the approaches has its 

limits and advantages. Our ADA NQL combines all the 

approaches together. The main characteristics of the NQL 

parser we have built are: Our ADA NQL combines all the 

approaches together. The main characteristics of the NQL 

parser we have built are: 

• it is robust (queries like : sum Patients or Patients 

summed or sum of the best Patient I know of are parsed 

in the same way), 

• it tries to understand what the user meant by his/her 

query (e.g. the query Age by country is automatically 

translated to Sum Age by Country as we cannot make 

aggregation without operations),  

• it is flexible (the dictionary used to match the words in 

the query is taken from the input data and from an 

ontology), 

• it is dedicated for making analytical queries to sets of 

data. 

• part of its content is defined in the data and another part 

is defined in an ontology associated to the data. 

So on the one hand we have defined a controlled natural 

language with a strict syntax (see Section 3.1), while on the 

other hand the parser tries to match the written query to the 

controlled natural language query in all possible ways. 

V. RELATED WORK 

On-Line Analytical Processing (OLAP) cube approach, is 

already used with CDSS. It provides decision-makers with 

online access to analytical capabilities based on the idea of 

dimensions. deals with dimensions and measurements and 
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therefore it is suitable solution for summarization. Decision 

support systems that use advanced technologies such as 

(OLAP) and data mining to deliver advanced capabilities is 

presented in [5]. In [6] integrated data warehousing, OLAP, and 

data mining techniques are presented to support process of care-

givers and clinical managers. The possibilities of using data 

warehousing and OLAP technologies in public health care in 

general is presented in [7]. 

LUNAR [8] was the  first NQL-database system that 

allowed natural language to be used to query a database about 

samples of moon rocks, however, nowadays this system is 

considered to be very limited in linguistic capabilities [9]. 

RENDEZVOUS [10] was the system that implemented the 

“man-in-the-loop” way of human-database interaction based on 

a dialogue with a machine. Within the dialogue system it was 

possible to clarify all the difficulties found during the initial 

user input by helping the user to formulate queries. LADDER 

[11] was a general purpose NQL-database that was able to be 

connected to different underlying DBs, but at the same time it 

used grammars that were application-dependent making the 

system hardly portable. CHAT-80 [12] transformed English 

into Prolog expressions that were then evaluated against an 

existing database. CHAT-80 was a foundation for other 

experimental systems e.g.: MASQUE [13] and PRECISE [14]. 

ACE - Attempto Controlled English [15] is a Prolog-based, 

widely adopted general purpose language that allows a CNL-

based NQL to be built. CNLs like ACE, being very precise and 

expressive require, at the same time, the use of a predictive 

editor that forms a kind of rails on which the user can write a 

syntactically correct sentence. 

Also, modern NQLs are configurable with certain domain-

specific ontologies, making the NQL core domain-agnostic. In 

the {AskMe* } system [16] an ontology is generated when the 

system is connected to a database. The generator processes the 

schema of a given database and generates an ontology that 

contains knowledge about the domain, properties, relationships 

and constraints that already exists in the given database. The 

ontology is then used to automatically generate a specific 

parser. Another example of a modern approach is SWSNL [17]. 

It is a semantic search engine equipped with a natural language 

interface. The user input in natural language is analyzed by the 

linguistic component and produces its formal representation. 

The linguistic component combines a few Natural Language 

Preprocessing (NLP) technologies like: Named Entity 

Recognition (NER) and semantic analysis. As a result, a 

SPARQL [18] query is generated and executed. 

VI. CONCLUSION AND FUTURE WORK 

We implemented NQL oriented summarization solution as 

a part of GIST-CDSS. We used general purpose ADA solution 

and tailored it to the needs of oncology-specific CDSS with 

specific ontology. ADA ontologies contain both: the knowledge 

about the configuration as well as the general knowledge that 

can be easily reused. The main query language is ADA NQL - 

the query language that accepts a large spectrum of (even 

erroneous) natural queries. Obtained summarization system is 

currently being tested in the Maria Sklodowska-Curie 

Memorial Cancer Center and Institute of Oncology in Warsaw.  
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