
DOI: 10.17951/ai.2016.16.1.12

A N N A L E S
U N I V E R S I T A T I S M A R I A E C U R I E - S K L O D O W S K A

L U B L I N – P O L O N I A

VOL. XVI, 1 SECTIO AI 2016

EXTENDING DQL WITH RECURSIVE FACILITIES

Marta Burzańska 1, Przemysław Krukowski1, Piotr Wiśniewski 1

1 Faculty of Mathematics and Computer Science,

Nicolaus Copernicus University in Torun

KEY WORDS: ORM, PHP, Doctrine, recursive queries, CTE.

ABSTRACT: Object Relational Mappings reduce a gap between Relational Databases and

programming languages. However, only the simplest operations are covered by the ORM

frameworks. Most facilities provided by DBMSs are not usable via ORM. Among such features are

recursive queries, introduced in SQL:99 standard. This paper presents integration of Recursive

Common Table Expressions with Doctrine Query Language - a part of Doctrine ORM framework

for PHP.

1. INTRODUCTION

Hierarchical and graph structures can be found everywhere. Real-world examples are: bill-

of-material, employee hierarchy, network of roads between cities. Commonly used version

control systems represent direct acyclic graphs in which a single ''checkin'' can have from

zero (the initial "checkin") to multiple parents (predecessors). To search through such

structures, when the length of the search path is unknown - we need recursion. When

building database application we may either use user defined stored server-side recursive

functions, emulate recursion by sending database requests in each step of recursion, or

utilize built-in recursive queries. Our intuition tells us that usually it would be best to use

recursive queries, mainly due to DBMS's built-in optimization techniques. However, not

all DBMSs implement recursive queries, despite their introduction in SQL:99 standard.

What is more, each DBMS that supports recursive queries differs in their implementation

from the standard schema [1].

 Let us return to the problems of building database application. Nowadays,

most applications are developed in an object-oriented language, but their backend is a

relational database [1]. To improve the process of an application development, a common

practice is to use Object-Relational Mapping (ORM). Programmers, that decide to use a

popular external library gain time needed to write their own non-standard methods of data

handling. They also get a tool that has been through-out tested by a number of users, which

significantly increases safety and often results in improvements to memory management

and query processing speed. However, the main benefit of the usage of ORM libraries is

the speed of code development and code portability between different DBMSs. Examples

of the most popular ORM solutions are: Hibernate (Java) [2], Django Models (Python)

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 13/02/2026 18:20:45

UM
CS

13

[3], Entity Framework (.NET platform) [4], ActiveRecord (Ruby) [5] and Doctrine ORM

(PHP) [6]. Unfortunately, they do not offer full capabilities of a professional DBMS. Most

ORM frameworks provide additional data management capabilities through an alternative

object query language. Usually it is similar to SQL, however it references objects and not

records nor cells, and its data types are derived from the host language and not from a

database. Examples of such a language are HQL (Hibernate Query Language) in Hibernate

library and DQL (Doctrine Query Language) in Doctrine ORM. While those languages

extend the base functionality of an ORM, they still lack the support for more advanced

SQL language functionalities, including recursive queries.

 In this paper we discuss an extension of the Doctrine Query Language with a new

functionality - hierarchical data handling and processing of recursive queries. This is not

a trivial issue. The solution must reflect the spirit of ORM - one notation unchanged

regardless of the choice of the underlying DBMS. However, although the standard of

recursive CTEs has been formulated over a dozen years ago, not all DBMSs implement

them. Moreover, as we have already mentioned, various implementations may differ

significantly from each other. The initial prototype introducing the concept of server-side

recursion into a HQL language was presented in [7]. It added support for recursive

Connect By queries available in the Oracle database. This paper extends previous studies

with the support for recursive common table expressions (RCTE) and recursive queries

emulator, based on the unrolling of queries algorithm, designed for DBMSs not supporting

recursive CTE.

 We have chosen Doctrine Project for our experiments based, among many other

aspects, on PHP's popularity and Doctrine Project's specific design . It is a set of libraries

expanding the functionality of PHP that allows for integration with relational and non-

relational DBMSs. It splits its functionality between different layers of abstraction, which

makes it easy to create a unified solution regardless of the differences between various

DBMSs. One of its layers - the Database Abstraction Layer (DBAL) is specifically

designed for quick implementation of database communication mechanisms for database.

A programmer may utilize to connect and work with a database which does not have an

appropriate PDO library, while maintaining uniform approach to data handling. An

important element of the Doctrine ORM framework is its object-oriented query language

DQL, built in resemblance to SQL. It does not refer to tables or records, but to the objects

and relationships that link them. Doctrine is able to convert DQL query to a query in the

SQL dialect of the currently connected DBMS.

 This paper makes the following contributions:

 we propose an extension to DQL with recursive common table expression

functionality,

 recursive queries computation method that allows applications to run such

queries even if underlying DBMS does not support them,

 proof-of concept implementation of this extension with experimental results that

prove the robustness of our idea.

This paper is organized as follows. In Section 2 we discuss querying recursive data

structures using RCTE expressions. Section 3 describes the design of the proposed

extension to DQL. In Section 4 we discuss recursive query emulation based on query

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 13/02/2026 18:20:45

UM
CS

14

unrolling. Section 5 reports the details of the performance evaluation of our prototype

implementation. Section 6 concludes.

2. RECURSIVE QUERIES

The research presented in this papers focuses on the problem of processing graph and

hierarchical data structures. There is an abundance of real-life problems associated with

such structures among which are: finding the communication links between two cities or

finding routes based on information provided by the GPS systems, processing

championships' scoreboards, corporate hierarchy or bill-of-material.

The first DBMS implementing recursive queries was Oracle (version 2). They were

based on the Connect by statement and were used to recursively filter out rows in a selected

(only one) table. Alternative version of a recursive query, based on common table

expressions, has been introduced in 1997 in IBM's DB2 database. Their version has been

added to the SQL standard ANSI SQL:99. This version has the following syntax:

WITH [RECURSIVE] cte_name [(column list)] AS

(seed_query

UNION ALL

recursion_query)

outer_query

For example, to traverse a bill-of-material structure we may utilize the following query:

WITH RECURSIVE included_parts (sub_part, part, quantity) AS

(SELECT sub_part, part, quantity

FROM parts WHERE part = 'our_product'

UNION ALL

SELECT p.sub_part, p.part, p.quantity

FROM included_parts pr, parts p

WHERE p.part = pr.sub_part)

SELECT sub_part, SUM(quantity) as total_quantity

FROM included_parts

GROUP BY sub_part

Using this method one may traverse any hierarchical data without the a priori knowledge

about the depth of the tree. This task is impossible to accomplish with the use of multiple

subqueries or joins. And even with the knowledge about this tree's depth such queries

quickly become gigantic and hard to maintain. The use of the recursive queries aids in

gathering various data (like the tree's depth) in an organized fashion.

Nowadays most relational DBMSs implement RCTEs (despite the implementational

differences). Even Oracle, which for many years provided recursion through the Connect

By statement, implements RCTE construct. However, there is still a number of popular

systems, like MySQL or MariaDB, which do not support such queries.

3. EXTENDING DQL WITH RECURSIVE CTE

As mentioned earlier, the DQL language does not support recursion. In order to query

recursive data we have to write code fragments in DQL and process them using PHP's

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 13/02/2026 18:20:45

UM
CS

15

recursive functions or loops. This paper adds support for recursive queries by making

modifications to the Doctrine ORM library. Those modifications however, maintain

backward compatibility with the basic version of the system - they do not affect the

behaviour of queries other than RCTE. We have added the following rules to the DQL

grammar:

RecursiveStatement ::= RecursiveClause RecursiveBody

SelectStatement RecursiveClause ::= "WITH RECURSIVE " \

RecursiveFunctionName"(" \

{RecursiveFunctionArguments} ") AS "

RecursiveBody ::= (NonRecursiveTerm "UNION" | \

"UNION ALL" RecursiveTerm)

NonRecursiveTerm ::= SelectStatement

RecursiveTerm ::= SelectStatement

RecursiveFunctionPathExpression ::= \

RecursiveFunctionName "." \

IdentificationVariable ["." StateField]

In the basic DQL grammar the initial non-terminal symbol is "QueryLanguage", which

may be substituted with one of three non-terminal symbols depending on the first

encountered keyword in a query:

 SelectStatement for SELECT keyword

 UpdateStatement for UPDATE keyword

 DeleteStatement for DELETE keyword

Here we have added a new non-terminal symbol "RecursiveStatement" replacing

QueryLanguage symbol when lexer encounters the "WITH" keyword. The above-

mentioned grammar rules regarding RecursiveStatement result in the following recursive

query usage:

WITH RECURSIVE functionName(argument1, argument2...)

AS (/*seed query*/

SELECT valueList

FROM aliasDefinitions

[WHERE...] [GROUP BY ...] [HAVING ...] [ORDER BY...]

UNION [ALL]

/*recursive query*/

SELECT valueList

FROM aliasDefinitions

[WHERE...] [GROUP BY ...] [HAVING ...] [ORDER BY...]

)

/*outer query*/

SELECT valueList

FROM aliasDefinitions

[WHERE...] [GROUP BY ...] [HAVING ...] [ORDER BY...]

We have decided upon a form similar to its counterpart in SQL for several reasons. First

of all, this form is clear - every step of recursive query processing is defined separately. In

addition, one of the main features of the DQL is its similarity to SQL. In order to be

consistent with the DQL ideology, we have to keep our construct compatible with the

underlying SQL query. At the same time the authors were unanimous about the fact that

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 13/02/2026 18:20:45

UM
CS

16

the preservation of the RCTE structure will make it easier for developers to work with

those queries as they will be able to express directly their knowledge of SQL and the

intended purpose of the query. We have decided to limit the structure to one base clause

and one recursive clause, although some databases allow certain deviations from this rules.

Changes to the DBAL (Database Abstraction Layer) library responsible for

communication with DBMSs are fairly small. They take into account the syntactic

differences between database dialects and that for the MySQL the emulator of recursive

queries (discussed in the next section) should be launched. For this purpose we have

prepared the interface Doctrine\DBAL\Platforms\RecursivePlatform:

namespace Doctrine\DBAL\Platforms;

interface RecursivePlatform {

public function withClause();

}

This interface is implemented by the database-specific classes (eg.

Doctrine\DBAL\Platforms\OraclePlatform). Another problem was DQL's path expression

restrictions. Such a path expression can contain only a single nesting (one dot). So it is not

allowed to reference fields of a subobject: “c.parent.id”. For the purposes of handling

recursive queries, this functionality has been changed. However, for paths that start with

the alias pointing to the objects mapped in the Doctrine ORM, the double nesting is still

not allowed. The modified path expression may reference the recursive function and its

arguments, which may be both scalar values and mapped objects. Argument types of a

recursive function are determined by the types of variables declared in the FROM clauses

in seed and recursive subqueries. In the following exemplary query, both seed and

recursive parts of the WITH query determine the type of the "d" variable introduced in the

query's heading:

WITH RECURSIVE cat(d) AS

(SELECT c FROM Entity\Category c

WHERE c.id = 1

UNION ALL

SELECT cr FROM Entity\Category cr, cat

WHERE cr.parent = cat.d.id

)

SELECT cat.d FROM cat

4. RECURSIVE QUERIES EMULATOR

For the purpose of DBMSs that do not support recursive queries, we have created an

emulator unrolling a recursive query to the linear form of multiple queries sent to the

database server in a loop managed from within PHP.

The emulator class (Doctrine\ORM\Query\RecursiveEmulator) performs the task of

arecursive DQL query execution in three steps:

1) evaluation of non-recursive subquery

2) evaluation of the recursive subquery

3) evaluation of the main query.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 13/02/2026 18:20:45

UM
CS

17

Before launching the emulator's “execute()” function the following steps have already

been conducted:

1) DQL query lexical analysis (Doctrine\ORM\Query\Lexer)

2) DQL query syntax and semantic analysis (Doctrine\ORM\Query\Parser).

As a result of these steps, we obtain an AST (Abstract Syntax Tree) processed using three

instances of the parser and three instances of the Doctrine\ORM\Query\SqlWalker

containing the respective arrays of data created as a result of running the query. The most

important of these arrays is the “recursiveArgumentsData”. It should be noted that the

final process of the conversion of the AST to an SQL query was not conducted. Calling

the “walkRecursiveStatement()” method from the “SqlWalker” class would produce a

full recursive SQL query, not necessarily supported by the intended database system.

Therefore, during the emulation only a partial replacement of certain parts of AST is

performed, following the procedure described below.

First the object of the Doctrine\ORM\Query\SqlWalker class changes the seed

subquery of the With Recursive construct with an SQL Select query. What follows is this

query's execution and retrieval of its results. At this stage the SqlWalker already knows

the number and the types of the arguments of the DQL recursive query by analysing the

objects from the SELECT clause of the seed query. We also know the relationships

between DQL function arguments, SQL function arguments and the expressions from the

SELECT clause of the seed query. Those data are passed to the emulator, which then may

generate “on-the-fly” a mapping between a temporary table object and a temporary table

within the relational DBMS.

The fact that the DBMS may refer to the temporary table through a SQL query has

certain consequences. An array in PHP that stores operating data in a recursive step, must

have its counterpart in the database system. Therefore the emulator, after processing non-

recursive part of the query, receives information about the types of the arguments of the

recursive function, and therefore also about the temporary table types. Thus, the next step

is to form a suitable mapping table between the temporary PHP object and the temporary

table in the database. This results in the creation of the instance of a

Doctrine\ORM\Query\RecursiveEmulator\TemporaryTable type, which uses this

mapping. Entering, changing, or deleting data in a PHP array maintained in this object

also results in making appropriate changes in the temporary table in the database. In

addition to both temporary structures, an instance of

Doctrine\ORM\Query\RecursiveEmulator\Table is created. It gathers all the results

produced in every recursive step. It is not linked to any structure in the database.

Third step is the translation of the recursive part of the DQL's RCTE statement into

a single SQL SELECT query. In this new query we may find references the recursive

function and its arguments. Therefore, the temporary table has been named reflecting the

name of the function, and its column were named reflecting the function arguments'

names. Also, the types of the columns match the types of arguments calculated by the SQL

query, and “guessed” by the “MetadataGuesser” object. The SQL query will access the

data stored in the temporary table. Both in the first and in the second step, if the seed and

the recursive subquery are joined using “UNION” keyword, recurring results are removed

from both the temporary array of results and the working temporary table. In the case of

“UNION ALL” - they will be saved.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 13/02/2026 18:20:45

UM
CS

18

The fourth and final execution step is the processing of the outer Select query. Its

result is stored using the Doctrine\ORM\Query\RecursiveEmulator\TemporaryTable

object. Up to this point, all calculated data are stored in temporary tables of the relational

DBMS. After the final query execution and results' retrieval, temporary tables and PHP

arrays are removed to release the name of the recursive function and free resources.

5. PERFORMANCE

In this section we will show how the proposed solution affects the hierarchical data

processing speed. Tests were performed on a desktop class computer.

The tests were repeated many times, and presented results are the average values.

The prototypes were tested on two open-source database management systems MySQL

and PostgreSQL, and on a selected popular commercial system, which we shall denote

DBMS X. For each DBMS the tests were conducted with the same sets of data. The results

for each DBMS are gathered in separate tables. In conducted tests the size of recursive

data ranges from a few to 65,000 records. This set clearly shows the benefits of the

proposed solutions for DBMSs implementing recursive queries.

For each DBMS the results are summarized in corresponding tables. The first column

shows the number of records in the tree, the second column the tree depth, the third column

the execution time of naive data querying (ie. every result becomes a source for a new

query executed in a loop). The fourth column presents the recursive query execution time

– for PostgreSQL and DBMS X databases, whereas for the MySQL the results of the

recursive query emulation algorithm from Section 3. Column 5 shows the rate of

acceleration resulting from the use of the recursive queries technique.

Table 1Results for MySQL database

Rec qty Tree depth Naive Recursion Ratio

15 4 0.018 s 0.06 s 333 %

156 4 0.055 s 0.13 s 236 %

16276 4 4.8 s 5.26 s 110 %

255 8 0.08 s 0.21 s 263 %

8191 13 3.06 s 2.36 s 77 %

65535 16 27.7 s 24.1 s 87 %

These tests show that in the case of a DBMS not supporting RCTEs, the unrolling of

recursion brings little effect for larger data and slows down the parsing of the small data

sets. More tests on using the recursive query unrolling can be found in [8]

The results for the PostgreSQL database, which supports recursive queries, present

as following:

Table 2 Results for PostgreSQL database

Rec qty Tree depth Naive Recursion Ratio

15 4 0.02 s 0.08 s 400 %

156 4 0.11 s 0.11 s 100 %

16276 4 11.8 s 1.89 s 16 %

255 8 0.23 s 0.08 s 35 %

8191 13 8.67 s 0.73 s 8 %

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 13/02/2026 18:20:45

UM
CS

19

Rec qty Tree depth Naive Recursion Ratio

65535 16 79.9 s 9.65 s 12 %

In PostgreSQL using recursion results in an important initial overhead, but soon with the

increase in the size of the data we witness the increase in efficiency, which stabilizes at

bigger data sets with a tenfold acceleration.

Table 3 Results for DBMS X

Rec qty Tree depth Naive Recursion Ratio

15 4 0.08 s 0.07 s 87 %

156 4 0.11 s 0.11 s 100 %

16276 4 15.2 s 1.76 s 11 %

255 8 0.29 s 0.10 s 34 %

8191 13 7.37 s 0.85 s 11 %

65535 16 62.0 s 11.3 s 18 %

In DBMS X the test results were similar to PostgreSQL, what allows us to assume that

similar results would be obtained for other DBMSs implementing recursive CTEs

An interesting observation independent of the DBMS is the fact that the execution

times seem to be insensitive to the depth of the hierarchical structures. Everywhere the

results for the tree that contains 16,000 nodes with the depth of 4 were much slower than

the time results for the query searching through 8000 nodes in the tree of the depth of 13.

6. CONCLUSIONS AND RELATED WORK

In this paper we have presented a proposal to extend DQL with recursive facilities based

on SQL:99 Recursive Common Table Expressions. We have also presented the method of

emulating such queries for Database Management Systems that do not support them. In

order to encourage potential users we implemented a prototype mapper module that

processes DQL queries enriched with WITH RECURSIVE clause. The result of

performance tests conducted for this prototype emphasize the value of the proposed

improvement. Compared to naive 3GL code we can achieve orders of magnitude

improvement using our solution. Test have also shown that recursive queries are usually,

but not always, the best choice for DBMSs that support them. Also our prototype requires

the least modifications to the Doctrine framework. For the DBMSs that do not support

recursive queries we provide the emulator to uphold one of the main postulates of the

Doctrine ORM. According to it, each DQL query should be properly executed in each

supported relational DBMS and return identical results. Unfortunately the costs of

emulation (temporary table size, multiple requests to the database during recursive query

execution) significantly impact the benefits of the usage of recursive queries. On the other

hand the usage of recursive queries in comparison to emulator in DBMSs supporting

RCTE gave significantly better execution times, mainly due to elimination of multiple

database requests and better utilization of database built-in optimization methods.

This paper concludes the research conducted in the field of providing a programmer

with benefits of recursive queries. Other research topics dealt with Oracle’s Connect by

constructs [7], enhancing different ORMs with RCTE supports [9,10], unrolling of

recursive queries to support DBMSs without RCTE support [8], and benefits of utilizing

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 13/02/2026 18:20:45

UM
CS

20

recursion in different cases [11,12] and with different data sets. We have also studied

efficiency of execution of recursive queries in different DBMSs [1]. Interestingly, during

the time the research took place we have witnessed growing demand for recursive query

support [13,15] and enhancement of ORM capabilities [14]. Not only more DBMS

support RCTEs than initially, but also SQL Alchemy ORM [16] implemented support for

such queries in 2012 whereas our corresponding work dated 2010. Thus, we may

conclude, that the research in this field was beneficial.

LITERATURE

1. Boniewicz A., Burzańska M., Przymus P., Stencel, K.: Recursive query facilities in

relational databases: a survey, In DTA(2010), CCIS 118, 89-99.

2. Hibernate ORM, http://hibernate.org/orm/

3. Django Framework, https://www.djangoproject.com/

4. Entity Framework, https://msdn.microsoft.com/en-us/data/ef.aspx

5. Active Records, http://api.rubyonrails.org/classes/ActiveRecord/Base.html

6. Doctrine Project, http://www.doctrine-project.org/

7. Szumowska, A., Burzańska, M., Wiśniewski, P., Stencel, K.: Extending HQL with plain

recursive facilities. In Morzy, T., Harder, T., Wrembel, R., eds.: ADBIS (2). Volume

186 of Advances in Intelligent Systems and Computing., Springer (2012) 265-272.

8. Boniewicz, A., Stencel, K., Wiśniewski, P.: Unrolling SQL:1999 recursive queries. In

Kim, T.h., Ma, J., Fang, W.c., Zhang, Y., Cuzzocrea, A., eds.: Computer Applications

for Database, Education, and Ubiquitous Computing. Volume 352 of CCIS (2012)

345-354.

9. Szumowska, A., Burzańska, M., Wiśniewski, P., Stencel, K.: Efficient implementation

of recursive queries in major object relational mapping systems. FGIT 2011, LNCS

7105,78-89.

10. Wiśniewski, P., Szumowska, A., Burzańska, M., Boniewicz, A.: Hibernate the

recursivequeries - defining the recursive queries using Hibernate ORM, In Eder, J.,

Bielikova, M., Tjoa, A.M., eds.: ADBIS (2). Volume 789 of CEUR Workshop

Proceedings.,CEUR-WS.org (2011) 190-199.

11. Gawarkiewicz, M., Wiśniewski, P.: Partial aggregation using Hibernate. FGIT 2011,

LNCS 7105, 90-99.

12. Boniewicz, A., Gawarkiewicz, M., Wiśniewski, P.: Automatic selection of functional

indexes for object relational mappings system. International Journal of Software

Engineering and Its Applications 7 (2013).

13. Joshi, A., Kukreti, S.: Object Relational Mapping in Comparison to Traditional Data

Access Techniques. International Journal of Scientific \& Engineering Research,

Volume 5, Issue 6, June-2014.

14. M. Sysak, B. Zieliński, P. Kruszyński, Ś. Sobieski & P. Maślanka. "Static Integration

of SQL Queries in C++ Programs". In Advances in Databases and Information

Systems, Springer International Publishing, 2014, pp. 126-138.

15. C.M. Gersen, "ORM Optimization through Automatic Prefetching in WebDSL". PhD

Thesis. TU Delft, Delft University of Technology, 2013.

16. SQL Alchemy. http://www.sqlalchemy.org/

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 13/02/2026 18:20:45

UM
CS

Pow
er

ed
 b

y T
CPDF (w

ww.tc
pd

f.o
rg

)

http://www.tcpdf.org

