
Annales UMCS Informatica AI XII, 1 (2012) 39–45

DOI: 10.2478/v10065-012-0009-z

Automatic reasoning in the Planet Wars game

Bartosz Ziółko1∗, Maciej Kruk2

1Department of Electronics, AGH University of Science and Technology,

al. Mickiewicza 30, Kraków, Poland.
2Department of Computer Science, AGH University of Science and Technology,

al. Mickiewicza 30, Kraków, Poland

Abstract – An artificial intelligence algorithm for a computer game competition organised by Google

and University of Waterloo is presented. It competes with others by reasoning, evaluating of a situation

and taking decisions in a war simulation.

1 Introduction

Computer games are rapidly growing computer science industry all over the world

including Poland. It is also a popular field to test and develop several types of AI

(artificial intelligence) algorithms [1, 2, 3, 4, 5].

The objective of the Google AI Challenge [6], a programming contest organised

by the University of Waterloo Computer Science Club, was to create an autonomous

computer program that plays the game of Planet Wars as intelligently as possible.

Planet Wars is a strategic game set in the outer space based on Galcon. A game takes

place on a map (let (i, j) be discrete coordinates) containing several planets, each of

them with a specific number of space ships on it, belonging to one of the two players or

neutral. In each turn, the player may choose to send fleets of ships from any planet he

owns to any other planet on the map. The game includes a certain maximum number

of turns, which is 200. The player with the more ships at the end of the game wins.

The Galcon game consists of a map and ships. Planet positions are specified relative

to a common origin in the Euclidean space. The coordinates (i, j) are given as the

floating point numbers. However, to simplify mathematical description, let us see the

map as a matrix M [i, j]. Planets never move and are never added or removed as the

∗bziolko@agh.edu.pl

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 13/02/2026 18:20:45

UM
CS



40 Automatic reasoning in the Planet Wars game

game progresses. Planets are not allowed to occupy exactly the same position on the

map. The integer values mij ofM describe production of (i, j) position of the map.

The values mij = 0 represent empty space. Planets are locations fulfilling mij > 0 and

they can either belong to one of the players or are neutral. Matrix M does not change

in a particular game and even though it is not mentioned in the rules, it is symetrical

in all games to allow equal chances of winning for both sides.

In each turn, the player may choose to send fleets of ships from any planet he owns

to another planet on the map. He may send as many fleets as he wishes in a single

turn as long as he has enough ships to supply them. After sending fleets, each planet

owned by a player (not owned by neutral) will increase the forces there according to the

planets growth rate mi,j . Different planets have different growth rates. The fleets will

then take a number of turns to reach their destination planets, where they will then

fight any opposing forces and, if they win, take ownership of the planet mij . Fleets

cannot be redirected during travel. Players may continue to send more fleets in later

turns even while older fleets are in transit.

The growth rate of the planet is the number of ships added to the planet after each

turn. If the planet is currently owned by neutral, the growth rate is not applied.

Players can only get new ships through growth. The growth rate of a planet will never

change. It is given as an integer value. Let us denote A[i, j] and B[i, j] as matrices

describing the positions and numbers of ships for both players. A and B change their

values during all turns. The first type of changes is due to production of new ships on

planets

∀i,j aij := aij +mij if mij is controlled by player A

∀i,j bij := bij +mij if mij is controlled by player B .
(1)

The second type are movements. Players can order any movements of their ships aij

and bij to any positions (i, j) such that mij > 0 (namely to other plantes). A transfer

cannot be cancelled once started, however, it will last several turns and ships can be

located on any (i, j) position while moving. The total trip length is given as an integer,

representing the total number of turns required to make the trip from the source to the

destination. The remaining turns are also an integer, representing the number of turns

left from the current turn to arrive at the destination. Trip lengths are determined at

the time of departure by taking the Euclidean distance to the destination (i, j) from

the source (k, n) and rounding up, w (noted later on by ⌈⌈). Finally, if ships of opposite

players aij > 0 and bij > 0 meet on the planet mij > 0, they fight. There is no random

aspect in such fights. If aij > bij , then next turn aij := aij − bij , bij := 0 and A takes

control of production mij . If bij > aij the other way around.

2 Basic algorithm

Our solution divided possible changes in a game state (moves) into several groups,

based on the history of ownership and location mij > 0 of the targeted planet:

(1) Defence

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 13/02/2026 18:20:45

UM
CS



Bartosz Ziółko, Maciej Kruk 41

(2) Attack

(3) Expansion

(4) Supplies

Before these moves, planets, states in the future are evaluated in each turn.

Every turn, AI makes a decision, which of these moves is locally the highest gain

value and performs them. To make the decision process more accurate, it needs a whole

range of data concerning the planets and fleets:

(1) General planet specification (location, size) M [i, j],

(2) Planet status in each point of time i.e.: ownership (A, B or neutral), number

of ships including incoming fleets (A[i, j] and B[i, j]),

(3) Possible ways of attack (distances between mij > 0),

(4) Planet location in context of other planets of its owner.

At the beginning of each turn, the program calculated all the necessary information.

Next it entered a sequence of functions responsible for fleets discharge (defence, at-

tack, expansion, supplies) in which it assessed each planet’s value and based on it and

surrounding planets state made local decisions of ships transfers.

3 Reasoning and decision taking

The function of predicting the future calculates planet states in the future based

on planet ownership, growth rate and flying fleets. Additionally, the function com-

putes how many ships can enemy deliver to each planet in each step (used for attack

prevention).

Defence of planets under attack and ships surplus calculation is taken by the defence

function. It ensures that after

max_distance = max
mij>0,mkn>0

⌈

√

(i− k)2 + (j − n)2
⌉

(2)

turns, as many as possible of its planets will remain under control.

For each of its planets, the algorithm calculates the number of ships needed to

keep them from being overtaken by the enemy. Later it sorts them according to their

production rate mij , distances to other planets
{⌈

√

(i− k)2 + (j − n)2
⌉

: mkn > 0
}

and distances to the enemy
{⌈

√

(i− v)2 + (j − w)2
⌉

: mvw > 0
}

and try to defend as

many as possible. If it is impossible to keep the planet during all time, the algorithm

tries to retake it, not long after it is overtaken. If the planet still belongs to the AI

during the next (2) turns, it calculates how many ships it can send off from this planet

not losing them.

The attack stage consists of two activities. The first one is sniping (see Fig. 1). The

algorithm tries to attack neutral planets that will be overtaken in the future soon after

the attack. In this way, the enemy loses his forces to fight the neutral planets and our

algorithm can overtake a planet with fewer ships.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 13/02/2026 18:20:45

UM
CS



42 Automatic reasoning in the Planet Wars game

Fig. 1. Sniping is a strategy of waiting for conquering a planet by an enemy

losing ships during on its defence. Left planet belongs to b and has 35 ships,

right to b with 25 ships, and the central one is neutral. First, the player b

attacks the central planet using 32 ships. 31 of them are lost in fight with

the neutral forces. Afterwards the player a sends a fleet to fight the only

survived ship of b plus what he will manage to produce on the central planet,

which is 3 in this example. In the last stage the central planet is in control

of a and what is very important, the player a has more ships, namely 26,

on its starting planet and player b, 9. The player b has no chance to win,

even though, he starts with more ships than the player a

The second phase is a regular attack. The algorithm browses through all enemy

planets and attacks those it is sure that it can overtake even if the enemy sends all the

ships to defend it (even for just one turn)

m
fitness
ij := c− btij + 1000mij (3)

where btij is the prediction of the value of enemy ships in t turns in the future on

mij > 0 and c = 2 000 000 is a constant, large value. Value of t is the distance
⌈

√

(i− k)2 + (j − n)2
⌉

, where mkn is a planet from which we plan to attack. The

algorithm avoids attacking the planets further than 0.5max_distance, unless there are

no enemy planets closer.

The expansion phase consists of neutral planets evaluation (based on their growth

rate, number of ships and distance to both players).

m
fitness
ij := mij

(⌈

√

(i− k)2 + (j − n)2
⌉

−
⌈

√

(i− v)2 + (j − w)2
⌉

+ 1
)

− sij (4)

where mkn belongs to the enemy and mvw to our AI and sij is the number of neutral

ships on mij . Positive value of (4) means it will be advantageous to take over mij even

if the opponent will take it over afterwards. If (4) is negative, other arguments are

taken into account.

AI expands more aggressively, if the own accumulated growth rate is lower than that

of the enemy

m
fitness
ij := m

fitness
ij +

{

50mij if winning

20mij otherwise
(5)

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 13/02/2026 18:20:45

UM
CS



Bartosz Ziółko, Maciej Kruk 43

Fig. 2. Safe planets should supply the frontal one with ships. The reason for

it is that the planets far away from the oponent are unlikely to be attacked.

Even if they are attacked they could be reinforced, between discharging ships

by the enemy and arriving to the target. In contrast, typically there are front

line planets which cannot be reinforced already during the attack because

the distance from the enemy is smaller then from reinforcing planets. What

is more supplying scheme is also useful to gather ships for a full attack with

as short warning as possible

The map is always symmetric. AI prefers the planets whose mirrors are overtaken by

the enemy (its m
fitness
ij is increased by 1 000 000). The algorithm always attacks the

planets it is sure to profit from. If it has enough ships, it will also try to overtake other

planets, based on their previously calculated value m
fitness
ij .

The front consists mainly of the own planets (sometimes also neutral ones that are

attacked) that can not be defended by sending ships on time from other planets in

case of enemy attack. At the same time, they are capable of defending any non-frontal

planet of our AI. Storing all own ship reserves on the frontal planets improves our

defence and attack potentials.

Another part of the algorithm is reasoning about supplies (see Fig. 2), which is a

movement of surplus ships from the non-frontal planets to the front ones. The number

of ships sent to each planet is proportional to the sum of reciprocals of distances to the

enemy planets multiplied by the numer of ships they store. This way it tries to take

into account enemy ships movements.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 13/02/2026 18:20:45

UM
CS



44 Automatic reasoning in the Planet Wars game

4 Conclusions

The described algorithm is ranked as 105 for over 4600 competitors and the sixth in

Poland. The most difficult task in such AI is in providing a balance between defence,

expension on neutral planets and attacking the enemy. Each game consists of too few

turns to adapt behaviour to a particular enemy, especially that calculations have to be

made in up to 2 seconds per turn. Hard coded rules are often too defensive for some

opponents and maps while too aggresive for others.

Fig. 3. Example of a game with too little expansion (top) and linear,

correlated functions of growing of both opponents (middle). The func-

tions summarising another (more typical) game are presented for compari-

sion(bottom). Both AIs will keep collecting ships in the case of an attack

which is never going to happen. An AI which would decide to take a risk

and attack a neutral planet to enlarge its production potential is likely to

succed in such a scenario.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 13/02/2026 18:20:45

UM
CS



Bartosz Ziółko, Maciej Kruk 45

Undoubtedly, the hardest part to balance is the expansion phase. Too little or too late

attacks on neutral planets usually mean AI is left behind in terms of ships production

(see Fig. 3). Too many or badly chosen expansions can make one vulnerable to enemy

attacks, or give away the attacked planet to an enemy.

Instead of making local decisions to attack/expand/defend, it would be probably

better to gather all data about every planet, rate them taking into account their in-

terrelations and then decide on the fleets destination. Also instead of finding the

source-destination-ships combination, it would be better to plan the planet population

and then send fleets from the closest planet to achieve it. That should help fight off

the situations when fleets are being sent to defend distant planets.

In the case of attacking a planet from a few different sources, instead of attacking

it simultaneously, it would be better to take into account their distance to the enemy

and dispatch fleets at the last possible moment, so all of them reach their destination

at the same moment.

Some enemy movements are easy to predict (e.g. planet sniping, repeated supplies,

constant attacks) and hence the should be taken into account when making decisions.

Other types of movement can be taken into account by browsing the game tree. It is

too big to analyse thoroughly (the competition gives a calculation time limit for each

turn) but at least the analysis of the potential attack routes should be possible. The

main problem is in including these predictions into the future states analysis.

Acknowledgements

Some figures were made by Jakub Gawlik thanks to the organiser and the sponsor

of the competition.

References

[1] Baba N., Jain L. C., Handa H., Advanced Intelligent Paradigms in Computer Games, Springer

(2007).

[2] Barber H., Kudenko D., Generation of adaptive dilemma-based interactive narratives, IEEE

Transactions on Computational Intelligence in Games 1(4) (2009): 309.

[3] Rabin S. C., AI game programming wisdom, Charles River Media, Inc. (2002).

[4] Funge J., Artificial Intelligence for Computer Games: An Introduction, A K Peters, Wellesley,

MA. (2004).

[5] Millington I., Funge J., Artificial intelligence for games, Elsevier (2009).

[6] AI Challenge Ants: http://ai-contest.com/ (12.10.2012).

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 13/02/2026 18:20:45

UM
CS

Pow
er

ed
 b

y T
CPDF (w

ww.tc
pd

f.o
rg

)

http://www.tcpdf.org

