Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 15/02/2026 01:48:22

Annales UMCS
50 G Informatica
L7 :“;o Annales UMCS Informatica AI XI, 1 (2011) 33-41 Lublin-Poloni
g % DOI: 10.2478 /v10065-011-0022-7 ublin-rolonia
3) Sectio Al
28 LA

Cmnntt http://www.annales.umcs.lublin.pl/

Comparative evaluation of performance-boosting tools for
Python

Jakub Swacha!*

! Institute of Informatics Technology in Management, University of Szczecin,
Mickiewicza 64,71-101 Szczecin

Abstract — The Python programming language has a number of advantages, such as simple and
clear syntax, concise and readable code, and open source implementation with a lot of extensions
available, that makes it a great tool for teaching programming to students. Unfortunately, Python,
as a very high level interpreted programming language, is relatively slow, which becomes a nuisance
when executing computationally intensive programs. There is, however, a number of tools aimed at
speeding-up execution of programs written in Python, such as Just-in-Time compilers and automatic
translators to statically compiled programming languages. In this paper a comparative evaluation of

such tools is done with a focus on the attained performance boost.

1 Introduction

Python [1] is a relatively new programming language praised for its educational
capabilities [2]. It is simple: its keyword list is limited, and the syntax does not
contain unnecessary formalities. Program lines do not end with semicolons, and there
are no logical brackets (like begin / end of Pascal or braces of C), instead of which,
Python uses indentation to control the course of program execution - in this way it
avoids problems with the unpaired brackets and at the same time forces students to
properly format the source code. Python does not require variables to be declared -
a typical source of mistakes made by novice programmers. It is very easy in Python
to use complex data types, such as lists and dictionaries. Thanks to that, Python
makes possible very simple implementations of algorithms that use such data types,
which would be much more difficult to implement in other languages. Python is a very
concise and efficient language. According to S. McConnell’s studies, a single Python

*jakubs@uoo.univ.szczecin.pl

Pobrane z

czasopisma Annales Al- Informatica http://ai.annales.umcs.pl

Data: 15/02/2026 01:48:22

34

Comparative evaluation of performance-boosting tools for...

expression corresponds on average to six C expressions [3]. A similar rate was measured
for Perl, which, in contrast to Python, is known for its hardly readable source code.
Python has been ported to many system platforms and is available free from its official
website [4].

The problem with Python is its slowness. Antonio Cuni points the following reasons
for which Python is intrinsically slow [5]:

1. Interpretation overhead (due to code translation);

2. Boxed arithmetic and automatic overflow handling (even simple data types are
treated as objects);

3. Dynamic dispatch of operations (the types of arguments are identified on runtime);

4. Dynamic lookup of methods and attributes (the class components are identified on
runtime);

5. "The world can change under your feet" (classes and functions can be defined,
undefined and redefined on runtime);

6. Extreme introspective and reflective capabilities (that allow not only inspection of
a running program environment but also its modification).

The slowness often becomes a nuisance, especially when implementing classic algo-
rithms, which often consist of large number of repetitions of simple operations. When
developing industrial applications, one would resort to another programming language,
but in the case of education, when one wants to keep with Python for its other advan-
tages, he or she has to look for tools that can make Python programs run faster.

2 The competing solutions

The solution to the slowness of Python is compilation. Although some of the language
features make it virtually impossible to compile every line of every Python program,
it can be done in most cases.

The compilation may be Ahead-Of-Time (AOT), or Just-In-Time (JIT). The AOT
compilation is done once and is always static (based merely on the source code analysis).
The JIT compilation is done every time the program is run and may be dynamic
(adjusting the compiled code based on its actual execution).

Currently, there are seven popular tools that seem to handle this problem in some
way:

1. Cython [6], a programming language based on Python that can be automatically
translated to C or C++ and then compiled.

2. Iron Python [7], a .NET-based implementation of Python and as such making use
of the .NET’s JIT compiler.

3. Jython [8], a Java-based implementation of Python and as such making use of the
Java Virtual Machine (JVM)’s JIT compiler.

4. Psyco [9], a Python module capable of compiling Python functions using a special-
ized JIT compiler.

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl

Data: 15/02/2026 01:48:22
Jakub Swacha

5. PyPy [5], an RPython-based implementation of Python, capable of automatically
generating tracing JIT compilers.

6. Shedskin [10], a tool that can automatically translate Python code to C++ and
then compile it.

7. Unladen Swallow [11], a C-based implementation of Python, making use of the Low
Level Virtual Machine (LLVM [12]) JIT compiler.

There are also other, less popular tools of similar type, such as Pyrex [13] and
py2llvin [14|. They were not included in the comparison; the former, because it is
closely related to Cython [6, 13|, the latter due to its very early stage of development
[14].

Table 1 lists the most important features of the seven Python performance boosters
mentioned above.

Table 1. Comparison of Python performance boosters.

Tool Cython Iron Python Jython Psyco
Version 0.14 2.6.1 2.5.2RC3 1.6
CPython 2.6.1 2.6.1 2.5.2 2.5.4
What it is Programming Python Python Python
language implementation | implementation library
Compiler AOT JIT JIT JIT
Technology C/C++ .NET Java Proprietary
Compatibility Almost ful 1 Full Full Full
Code Needed Not needed Not needed Very slight
adaptation
Required CPython, C++ .NET JVM CPython
software compiler Framework
Disk space 6.2 8.3 50.4 0.3
Tool Pypy Shedskin Unladen Swallow
Version 1.4 0.7 2009Q4
CPython 2.5.2 2.6.1 2.6.1
What it is Python Translation tool Python
implementation implementation
Compiler JIT AOT JIT
Technology Proprietary C++ LLVM
Compatibility Full Limited Full
Code adaptation Not needed May be needed Not needed
Required software - CPython C++ compiler and
tools, LLVM
Disk space 46.9 128.0 3450.5

Remark: disk space given in megabytes, calculated for 4 KB disk cluster size.

The “Version” row shows the version used in the tests (in most cases the last released
version). The “CPython” row gives the CPython (the reference Python implementation
in C) version that the booster is based on (or compatible with); the general idea was

Pobrane z

czasopisma Annales Al- Informatica http://ai.annales.umcs.pl

Data: 15/02/2026 01:48:22

36

Comparative evaluation of performance-boosting tools...

to use CPython 2.6.1 as a reference, still not every booster has been released for that
version of CPython. The next row tells what the booster actually is; the “Compiler”
row shows the type of the compiler used, and the following row lists the technologies
which are behind the speed-up. Row “Compatibility” tells whether the boost can be
applied to every Python program, whereas the “Code adaptation” row indicates to what
extent a program’s source code must be modified for a booster to work. The one before
last row lists the software required to use the booster (apart from what is included with
the booster itself), and the bottom row of the table shows the disk space taken up by
the installation of a booster. Notice that it is the total disk space used (not the sum of
file sizes, as most of the boosters consist of a large number of small files, which, due to
disk space clustering, take up much more disk space than the sum of their component
file sizes), and without taking any further steps (as the installation of some of the tools
leaves a lot of files which are not required for them to run, yet they are not deleted
automatically).

3 Installation

Microsoft Windows has been assumed to be the target platform, as it was found
by this author to be the operating system family most popular among his students
currently.

Cython can be downloaded in a form of a Windows installer; after running it, the
user has just to confirm the Python version for which it is installed (as it is a Python
extension module). Iron Python can also be downloaded as a Windows installer, which
installs a Python instance; the only prerequisite is having installed .NET Framework.

Jython is a similar case, of course Java Virtual Machine is required here instead of
.NET Framework. Psyco, like Cython, is a Python module which has its own Windows
installer. Again, confirming the Python version is the only user’s input needed for
installation.

PyPy can be downloaded as a Zip archive containing Windows executables that
require no further installation. Shedskin is also distributed as a Windows installer,
containing all necessary components, including MinGW C+-+ compiler.

Unladen Swallow was found to be the most cumbersome to install of all the tested
software. First of all, it is only available as a source code within a Subversion repository.
As Unladen Swallow is developed for the Linux systems, the files have to be converted
to the Windows-based compiler project files using CMake utility. Unladen Swallow
requires LLVM, yet it is not included in its repository, therefore it also has to be
downloaded as source and compiled. Finally, Unladen Swallow has to be compiled to
produce a JIT-compilation-enabled Python instance. It means that, in order to use
Unladen Swallow, the end-user has to install Subversion, CMake and C+-+ compiler
unless he or she is a C++ developer and has these components already installed.

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl

Data: 15/02/2026 01:48:22
Jakub Swacha

4 Usage

Cython is designed as a tool for library development, therefore the code to be com-
piled must be provided as a separate module. Cython source files have PYX extension,
they can be compiled into C (or, optionally, C+-+) code by calling the Python’s setup
function (from distutils module) with appropriate parameters; an exemplary Python
code is included with Cython distribution. The built module has a PYD extension and
can be imported from within a Python program.

Psyco is a module which has to be imported into the Python program to make the
JIT compiler available. Only functions can be compiled (not the main program code),
this little drawback can obviously be worked around by moving a complicated main
code into a separate function. There is the full function that run once compiles all
the program functions.

Shedskin provides a shell script (init.bat) that sets up the environment for its
usage. After doing it, one has to run shedskin.exe which analyzes the specified
Python program file in order to determine the used data types and then translates the
source code to C++. This process takes quite a long time — sometimes many seconds
even for simple programs. Finally, one has to run the bundled make.exe in order to
build the CPP and HPP files resulting from the previous step into an executable file
that can be run directly from the operating system environment.

The remaining solutions: Iron Python, Jython, PyPy, Unladen Swallow are all in-
stances of Python, and their usage is the same as CPython’s: one has to run the main
interpreter file, specifying the file with the source code of a program to be run as the
first parameter. The JIT compilation is turned on by default.

5 Performance test methodology

The core idea behind this research was to test the performance of Python-native
code after having applied the boost. We wanted to test classic algorithms implementa-
tions rather than industrial applications, to simulate the speed perceived by a student
implementing and testing such algorithms. Seven such programs, that were found to
work correctly with each of the tested boosters, were selected for the tests. Their list,
including name, description of the algorithm and its main parameters, as well as the
most time-intensive operations, is given in Table 2.

The LZ and Sieve programs come from the Shedskin’s set of examples [10], the
remaining ones were implemented by this author.

None of the tested programs was modified in any way to suit better any of the
boosters, apart from the modifications that were necessary for a booster to work at all.

The time was measured from inside the tested program, using the clock function,
i.e., it does not include the time spent either on interpreter startup or compilation.
The time was measured for two consecutive runs of each program, and the smaller

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl
Data: 15/02/2026 01:48:22

38 Comparative evaluation of performance-boosting tools......

Table 2. List of programs used in performance tests.

Programl Description Main elements
BST Binary-Search-Tree insert (50000), Recursion, object handling
find (10000) and delete (5000) elements
Fibonacci Fibonacci string generator (to 33) Deep recursion
Knight Chess Knight problem (6x6 board) Recursion, handling lists of lists
LZ Lempel-Ziv’77 file compressor Bit operations, I/O operations

and decompressor (10 KB)

Queens Chess Queens problem (27x27 board) | List operations, embedded loops
Sieve Sieve of Atkin (to 20000000) Handling long lists, long loops
Sort Quicksort (500000 elements) Handling long lists, recursion

measurement was registered. The test was supposed to be repeated if the difference
between the two measurements exceeded 10%, but such situation did not take place.

6 Performance test results

The tests were performed on a Intel Core2Duo 6420 2.13 GHz machine with 2 GB
of RAM under the Windows XP SP3 operating system.
The measured execution times are shown in Fig. 1.

25

20

15

10

NSNS NN NN NN |

BST Fibonacci Knight Lz Queens Sieve Sort Average
E Cython HElronPython M Jython OPsyco HBHPyPy [BShedskin H Unladen Swallow

Fig. 1. Measured execution times.

Looking at the average results, it can be clearly seen that the two solutions: Psyco
and Shedskin attained times much better than the others whereas the longest execution
times were measured for Jython and Unladen Swallow.

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl

Data: 15/02/2026 01:48:22
Jakub Swacha 39

More detailed results are given in the tables to follow. They present the relative
speed-up (the difference between the reference execution time and the boosted execu-
tion time divided by the reference execution time) attained by the tested performance
boosting tools (see Table 3), and by different versions of CPython (see Table 4), all
compared to CPython version 2.6.1.

Table 3. Measured relative execution speed-up: Python performance boosters.

Tool Cython Iron Jython | Psyco | PyPy | Shedskin | Unladen

Python Swallow
BST 6.3% 16.2% 3.6% 91.9% | 83.8% 98.6% -61.3%
Fibonacci | 16.1% 45.6% | -128.2% | 92.3% | -164.5% 96.8% -34.7%
Knight 9.0% -10.0% | -239.2% | 40.2% | 51.8% 40.9% -13.3%
LZ 0.0% 21.7% | -66.7% | 25.0% | 33.3% -81.7% 23.3%
Queens 15.1% -25.2% | -169.1% | 71.2% | 27.0% 88.1% 18.3%
Sieve 22.4% -45.4% | -272.0% | 78.1% | 35.8% 89.3% -368.9%
Sort 17.2% 26.6% | -226.6% | 53.9% | 56.6% 84.6% -15.8%
Average 12.3% -2.0% | -156.9% | 64.7% | 17.7% 59.5% -64.6%

Table 4. Measured relative execution speed-up: CPython versions.

CPython | 2.4.4 2.5.4 | 2.6.1 2.7 3.0 3.1 3.2

BST -27.9% | -60.4% | 0.0% | 0.0% | 70.7% | 70.7% | 66.2%
Fibonacci | -18.5% | -12.5% | 0.0% | -2.0% | -12.9% | -19.8% | -21.0%
Knight -35.5% | -36.2% | 0.0% | -5.3% | 10.6% 8.6% | -20.6%
LZ -45.0% | 26.7% | 0.0% | -1.7% | -15.0% | -43.3% | -45.0%
Queens | -15.1% | -30.6% | 0.0% | 7.6% | 3.2% | 14.0% | 9.0%
Sieve -11.4% | -17.4% | 0.0% | 6.3% | -81.4% | -83.4% | -53.0%
Sort -18.0% | -21.9% | 0.0% | 3.9% | -32.6% | -29.3% | -39.3%
Average | -24.5% | -21.8% | 0.0% | 1.2% | -8.2% | -11.8% | -14.8%

The first observation is that the results presented in Table 3, with the exception of
Psyco, are noticeably different from those presented in the literature (or respective
booster documentation), especially to those given by the authors of the tested solutions.
Iron Python, instead of significant speed-up, produced a slight slow-down compared to
CPython. PyPy, instead of being faster than Psyco, was found to be slower on four of
the seven tested programs, and its performance on Fibonacci was very disappointing.
Psyco produced the most consistent results; Shedskin, although significantly faster
for most programs, stumbled on LZ. The performance of Unladen Swallow was the
most disappointing, with a performance boost measured only for two programs, and a
shocking performance degradation in the case of Sieve.

As for the performance of different CPython versions, one can notice a great improve-
ment attained with version 2.6.1. The new line of Python (versions 3.x) has noticeably
improved object handling performance (the case of BST), still the average performance

worsened.

Pobrane z

czasopisma Annales Al- Informatica http://ai.annales.umcs.pl

Data: 15/02/2026 01:48:22

40

Comparative evaluation of performance-boosting...

7 Conclusions

The obtained results show that the performance boosters can help improve the ex-
ecution speed of Python programs. The boosted programs worked even 70 times as
fast (Shedskin on BST), with an average speed-up factor of about 3 (Psyco). Even
though Psyco is one of the oldest performance boosters for Python, in our tests it
achieved the results boldly superior to the solutions that were supposed to supersede
it (PyPy and Unladen Swallow), and thus remains the best solution for the assumed
purpose (speeding up classic algorithms implementations in the context of computer
science/programming education). Although Shedskin peformed better than Psyco on
all but one of the tested programs, its static translation approach with long compi-
lation time and frequent compatibility issues excludes it from practical usage for the
aforementioned purpose.

Presumably, better results could be obtained at least from Cython and Iron Python
if the source code was specially prepared for these boosters, still it was not within the
scope of this research, which aimed at examining the improvement of execution speed
of native Python code without any unnecessary modifications.

References

[1] Lutz M., Programming Python, O’Reilly, Sebastopol, CA, USA (2001).

[2] Swacha J., New concepts for teaching computer programming to future Information Technology
engineers, [in:] Perspective technologies and methods in MEMS design, Lviv Politechnic National
University, Lviv, Ukraine (2010): 188.

[3] McConnell S., Code complete: a practical handbook of software construction, Microsoft Press,
Redmond, WA, USA (1993).

[4] Python Programming Language - Official Website, http://www.python.org (Visited 2010-12-10).

[5] Cuni A., High performance implementation of Python for CLI/.NET with JIT compiler generation

for dynamic languages, Universita di Genova, Genoa, Italy (2010).

Behnel S., Bradshaw R., Seljebotn D. S., Cython: C-Extensions for Python, http://cython.org

(Visited 2010-12-10).

Foord M. J., Muirhead Ch., IronPython in Action, Manning Publications, Greenwich, CT, USA

(2009).

[8] Pedroni S., Rappin N., Jython Essentials, O’Reilly, Sebastopol, CA, USA (2002).

[9] Rigo A., Representation-Based Just-In-Time Specialization and the Psyco Prototype for Python,
[in:] Proceedings of the ACM SIGPLAN Workshop on Partial Evaluation and Semantics-based
Program Manipulation, ACM Press, Washington, DC, USA (2004): 15.

[10] Dufour M., Shedskin - An experimental (restricted) Python-to-C+-+ compiler,
http://code.google.com/p/shedskin (Visited 2010-12-10).

[11] Winter C., Yasskin J., Unladen-swallow - A faster implementation of Python,
http://code.google.com/p/unladen-swallow (Visited 2010-12-10).

[12] Lattner Ch., Adve V., LLVM: A Compilation Framework for Lifelong Program Analysis & Trans-
formation, [in:] Proceedings of the 2004 International Symposium on Code Generation and Op-
timization, IEEE CS, Palo Alto, CA, USA (2004): 75.

[13] Ewing G., Pyrex - a Language for Writing Python Extension Modules,

[6

[7

http://www.cosc.canterbury.ac.nz/greg.ewing/python/Pyrex (Visited 2010-12-10).

Pobrane z czasopisma Annales Al- Informatica http://ai.annales.umcs.pl

Data: 15/02/2026 01:48:22
Jakub Swacha 41

[14] Fujita S., Py2llvin translates Python syntax into LLVM IR, http://code.google.com/p/py2llvin
(Visited 2010-12-10).

http://www.tcpdf.org

