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Abstract

Block ciphers are widely used in modern cryptography. Substitution boxes (S–boxes) are

main elements of these types of ciphers. In this paper we propose a new method to create

S–boxes, which is based on application of Cellular Automata (CA). We present the results of

testing CA-based S–boxes. These results confirm that CA are able to realize efficiently the

Boolean function corresponding to classical S–boxes the proposed CA-based S–boxes offer

cryptographic properties comparable or better than classical S–box tables.

1. Introduction

Cryptography plays an important role in security of data in the modern world.

Two main cryptography systems are used today to provide a secure commu-

nication: secret and public-key systems. An extensive overview of currently

known or emerging cryptography techniques used in both types of systems can

be found in Schneier [1]. The main concern of this paper are cryptosystems with
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28 MirosÃlaw Szaban, Franciszek Seredynski

a secret key. The main interest of this work are the Boolean functions used in

S–boxes and applied in efficient algorithms in secret key systems. Many known

secure standards of symmetric key cryptography use efficient and secure algo-

rithms working on the basis of S–boxes, such as e.g. FIPS PUB [2], FIPS PUBS

[3]. S-boxes are the most important components of block ciphers.

In the next section the concept of S–box and its most known applications

are presented. Section 3 describes a few cryptographic criteria to examine

the Boolean functions realized with S–boxes. Section 4 presents the concept

of CA. In section 5 the idea of substitution of S–boxes by CA is proposed.

Section 6 presents the results of examination of CA-based S–boxes, their quality

measured by efficient criteria and comparison with the earlier proposals. The

last section concludes the paper.

2. S-boxes in Cryptography

S-box is a function f , which from each of n Boolean input values of Bn block

consisting of n bits bi (i ≤ n) generates some k Boolean output values called

Bk block consisting of k bits bj (j ≤ k and k ≤ n):

f : Bn → Bk,

which corresponds to the mapping (b0, b1, . . . , bn) → (b0, b1, . . . , bk). When n

is equal to k, the function f , from n different input values maps n different

outputs values, and S-box is called bijective, Fuller et al. [4].

Fig. 1. Scheme presenting an application of S–boxes in the DES algorithm (on the

basis of FIPS PUB [2])
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One of the well known applications of S–boxes is their use in Data Encryption

Standard (DES) as the ”heart” of this algorithm [2]. In the DES algorithm 64

input bits are changed by Initial Permutation. After that 64–bit blocks are

transformed into two blocks of bits composed of 32 bits. One of these two

blocks is block R (see Fig. 1). The next operation in the algorithm is named

E and denoted as a function which takes a block of 32 bits as input and yields

a block of 48 bits as output. Function E takes 32 bits of block R and gives

a new block composed of 48–bits. Operation ⊕ denotes bit-by-bit the addition

of modulo 2 and creates from block E(R) and 48–bit block of key K a new block

of bits (see Fig. 1). In the next step, 48 bits (E(R) ⊕ K) are cut into eight

blocks composed of 6 bits each which are sent to eight S–boxes. Reassuming,

these eight widely known functions S1, . . . , S8 collectively transform the 48–bit

input block into 32–bit output block (see Fig. 1).

Each of the unique selection functions S1, . . . , S8 are the tables composed of

16–columns and 4–rows. Each function takes a 6–bit block as input and yields

a 4–bit block as output.

Fig. 2. Function S–box S1 (in the DES algorithm) represented as a table and its

work (on the basis of FIPS PUB [2])

Let us consider the function S1 represented in Figure 2 as a table. Suppose

that the input block of this function is the block B6, e.g. 110010. Two bits from

B6, the first and last one (e.g. 10) define row 2 of the S1 block. Four middle bits

1001 define column 9 of the S1 block. The intersection of column 9 and row 2

points the number 12, e.g. 1100, and these bits are considered as the B4 output
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block. S–boxes are also used in modern symmetric key cryptography systems,

e.g. in the new standard Advanced Encryption Standard (AES) (see, FIPS

PUBS [3]). AES is a successor of DES, and provides much better cryptographic

quality than DES.

3. Most Important Cryptographic Criteria for the Boolean

Functions

In our study we propose to use CA as a function which can be characterized

by the same properties and realize the same functions as widely known S–boxes.

A motivation for applying CA to realize S–boxes stems from potentially very

interesting features of CA. On one hand, CA has a computational possibility

equivalent to Universal Turing Machine (see Wolfram [5]), which means that

such functions can be realized. What is more, CA of a given size and governing

rules (see Section 4) can potentially represent not one but a number of S–box

functions, which can simplify designing cryptography systems. The important

issue is also efficiency of running cryptography systems. CA is a highly parallel

system, easy in hardware implementation, which results in high efficiency of

CA–based systems.

Quality of S–boxes designed with the use of CA must be verified by required

properties of S–boxes. The most important theorems for this purpose are re-

called from cryptographic literature (see Millan [6], Clark et al. [7], Fuller and

Millan [4], Dawson and Millan [8]).

The Boolean Function f : Zn
2 → Z2 maps n binary inputs to a single binary

output. The number of possible outputs is 2n. The list of all possible outputs

is the truth table. Polarity form of truth table is denoted by f̂(x) and defined

by:

f̂(x) = (−1)f(x).

The Boolean function is named the linear function when it can be expressed

as an XOR of input variables. Let x = (x1, x2, . . . , xn) be input variables then

the linear function defined by ω ∈ Zn
2 is expressed by the equation:

Lω(x) = ω1x1 ⊗ ω2x2 ⊗ . . .⊗ ωnxn,

where ωixi denotes the AND operation on i–th bits of ω and x, the operation

⊗ denotes XOR (exclusive OR) on bits. The set of affine functions is the set

composed of linear functions and its complements.

Walsh Hadamard Transform F̂f (ω) defines the correlation between the func-

tion f and the relevant linear function Lω(x). That indicates how well the

linear function approximates the function f . Walsh Hadamard Transform is
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Designing cryptographically strong S–boxes with . . . 31

a product of polar forms f and Lω expressed by:

F̂f (ω) =
∑

x∈Bn

f̂(x)L̂ω(x).

The absolute maximum value in space of transforms is defined by:

WHmax(f) = max
ω∈Bn

|F̂f (ω)|.
The non–linearity Nf of the Boolean Functions f is the minimum distance

to the set of affine functions and is calculated as:

Nf =
1

2
(2n −WHmax(f)) .

The higher the non–linearity of the observed ciphers is (WHmax is low), the

more difficult the cipher is for cryptanalysis.

Another important property of stream ciphers is autocorrelation ACf . Au-

tocorrelation is similar to correlation, but the polar form f(x) correlates with

the polar form f(x⊗ s), its shifted version. The Autocorrelation Transform of

the Boolean function f is given by the equation:

r̂f (s) =
∑
x

f̂(x)f̂(x⊗ s),

where s ∈ Zn
2 \{0}. The absolute maximum value of any autocorrelation is

denoted by the equation:

ACf = max
s6=0

∣∣∣∣
∑
x

f̂(x)f̂(x⊗ s)

∣∣∣∣.

The lower the autocorrelation of the observed ciphers is, the more difficult

for attacks the cipher is.

4. The Concept of Cellular Automata

One dimensional (1D) CA is in the simplest case a collection of two–state

elementary cells arranged in a lattice of the length N , and locally interacting

in a discrete time t. For each cell i called a central cell, a neighbourhood of

a radius r is defined, consisting of ni = 2r + 1 cells, including the cell i. When

considering a finite size of CA, and a cyclic boundary condition is applied, it

results in a circle grid (see Fig. 3).
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Fig. 3. 1D Cellular automata with the neighbourhood equal to 1

It is assumed that a state qt+1
i of a cell i at the time t + 1 depends only on

states of its neighbourhood at the time t, i.e. qt+1
i = f(qti , q

t
i1, q

t
i2, . . . , q

t
in), and

a transition function f , called a rule, which defines a rule of updating a cell

i (see Fig. 3). A length L of a rule and a number of neighbourhood states for

a binary uniform CA is L = 2n, where n = ni is a number of cells of a given

neighbourhood, and a number of such rules can be expressed as 2L. Fig. 3

presents an example of the rule 01011010 (called also rule 90) for r = 1. The

length L of the rule consists of 8 bits and is called a short rule. For CA with

e.g. r = 2 the length of a rule is equal to L = 32, and a number of such rules is

232 and grows very fast with L. CA for the systems with a secrete key were first

studied by Wolfram [9]. The author applied in his research one dimensional

uniform CA. One dimensional uniform CA use only one rule as a transition

function, contrary to one–dimensional nonuniform CA, which use more than

one rule to update the cells of CA.

5. Cellular Automata and Constructing S–Boxes

A classic S–box is a function expressed as a table (composed of natural

numbers). Cryptographic literature shows us many examples and methods of

searching for S–box tables. Qualities of S–box are measured with the use of

different functions which examine its different properties (see Millan [10], Millan

et al. [11], Clark et al. [7], Nedjah and de Macendo Mourelle [12]). Some of

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 18/10/2024 17:30:04

UM
CS



Designing cryptographically strong S–boxes with . . . 33

the most important testing functions are presented in section 3. In [10], [11],

[7] and [12] the authors study the subject and use many different methods of

searching through this huge space of S–box’s tables. Recently the heuristic

methods (see Millan et al. [11], Clark et al. [7]) are widely used in discovering

new tables. These methods give good results very fast. Each of these methods

in the consequence still searches for the combinations of numbers in the table.

We would like to propose another method without using a table as the base of

S–box. In our approach CA is expected to perform the same tasks as S–box.

The major principle of S–box work is as follows. S–box from each of

n input binary values generates some k output binary values. This condition

will be satisfied by the proposed CA, which from each of n input binary values

generates some n output binary values. In this proposition creation of specific

table is unnecessary because the CA as a tool equivalent to Turing’s Machine

(see Wolfram [5]) can realize any function, in particular functions related to

S–box.

We propose CA performing the role of S–box as a vector composed of:

– initial state of CA

– rule/rules applied to CA

– number of CA time steps

– selected cells of CA in which input bits of S-box (in the initial state of CA)

are placed, and the same cells are considered as the output of the S–box (after

the declared time steps).

To construct CA performing S–box function, it is necessary to find appro-

priate CA rules and verify produced results according to the S–box functions

criteria.

6. Designing CA-based S–boxes and Their Analysis

6.1. Searching for CA Rules and Construction of CA–based

S–box.

We start with examining uniform CA of the size 8 cells, with the use of all

256 short rules (r = 1). As a bijective S–box, CA with a size equal to 8 cells

(an initial CA state corresponds to S–box input) is examined in time steps

t (CA state at this moment corresponds to S–box output) equal to 5, 6, 7,

8, 30, 50, 100 (see Table 1). Non-linearity and autocorrelation values of all

examined 256 CA rules were calculated to select the best CA rules. The best

CA rules selected at this stage of experiments are as follows: 30, 57, 86, 99, 135

and 149. These rules provide non-linearity and autocorrelation values higher

than the other examined rules, and their scores are presented in Table 1.
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34 MirosÃlaw Szaban, Franciszek Seredynski

Generally, a higher value of Nf means that S–box provides higher quality

related to the non-linearity criterion, contrary to autocorrelation of S–box in

which higher quality of S–box corresponds to lower value of ACf .

Table 1. CA rules, which with the use of CA provide the best non–linearity Nf and

autocorrelation ACf in different time steps. CA size is equal to 8 cells, number of

experiments is equal to 100 for each time step. Rules are selected from the set

of rules with the neighborhood radius r = 1

The quality of the results presented in Table 1 in terms of the values of

(Nf , ACf ) appears to be comparable with the quality of classic S–boxes pre-

sented in [10], [11], [7]. The best (worst) theoretical values of non–linearity

and autocorrelation corresponding to this 8–bit CA–based S–Box are equal to

128 (0) for non–linearity and 0 (256) for autocorrelation. The scores of the best

CA rules presented in Table 1 for non–linearity are changing in the range [101,

108] and for autocorrelation in the range [56, 80]. The values of non–linearity

and autocorrelation obtained in experiments can be successfully compared with

the results (lower or similar) presented by Millan [10], Millan et al. [11] and

Clark [7]. It can be concluded that behaviour of CA which implements S–box

provides a good quality.

During all conducted experiments presented in this paper we assume that

we have to do with CA–based S–box with 8 inputs and 8 outputs, despite the

fact that a size of CA will be larger than 8. The next step of the research was
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Designing cryptographically strong S–boxes with . . . 35

a verification of CA rules quality from the point of view of bijectivity. When

the CA size is equal to 8 input/output cells then diversity of outputs obtained

from each of possible inputs is lower than 20%. Therefore, CA–based S–box

was examined with a number of cells ranging from 8 to 500, because larger CA

sizes provide higher diversity. During experiments the problem of allocation of

8 examined input/output bits in larger CA arises. An initial state of large CA

was randomly selected, but input/output bits of CA–based S–box need to be

determined. These 8 bits (main bits) are always located in one block (first bits

in CA – for simplicity) as a part of CA’s state. Other bits of large CA form

background, the environment for evolution of a block of main bits.

Another idea how to arrange bits in the background is to locate bits separately

in CA cells. In the series of tests main bits were located in CA cells in the

distance 1, 2, 5 and 10 cells from each other. The remaining CA cells were

set randomly. The results of the experiments (not presented in this paper)

show that in fact, the way of arranging main bits in the background has small

influence on diversification of outputs – the difference is of the range of 2%.

Fig. 4. 1D average diversification of outputs (in %) given by CA (after 100 time

steps) with rules: 57, 99 for CA’s sizes in the range [8, 500] of 1000 experiments
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Fig. 5. 1D average diversification of outputs (in %) given by CA (after 100 time steps)

with rules: 30, 86, 135, 149 for CA’s sizes in the range [8, 500] of 1000 experiments

Figures 4 and 5 present the results of verification in bijectivity condition. One

can see that for rules 57 and 99 (see Fig. 4) the maximal number of different

outputs of CA–based S–box is equal to only 8% values out of 256 values. It

means that these rules are not suitable for the purpose of S–box. Therefore, in

our next experiments these rules can not be taken into account. Fig. 5 shows

the results for rules 30, 86, 135 and 149. One can see that the results for

these rules are much better than for the previous ones: the maximal number of

different outputs is equal to about 63% and this feature concerns a relatively

wide size of CA up to 100 cells. These results seem to be promising and therefore

for the next study we focused on CA with 100 cells. Reassuming, in all our

next experiments CA size will be equal to 100, but the number of main bits

(input/output of CA–based S–box) will be equal to 8. Large CA (100 cells)

will be evaluated in discreet time steps (100 time steps), but only main bits (8

input/output bits) in large CA will be observed and examined.

The last conducted experiments concerned examination of CA rules which

passed both verification procedures. During two previous experiments rules 30,

86, 135 and 149 were selected as the best ones from the set of CA rules with

the neighborhood radius equal to 1. For these CA rules the first experiment
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was conducted with the new CA size, i.e. the values of non–linearity and

autocorrelation were calculated.

6.2. Comparison of CA–based S–box with Classical S–boxes.

In 1000 experiments for random background of bits in CA with 100 cells,

main bits were arranged in one block. In each experiment CA was run 100 time

steps. The results of the experiments are presented in Table 2.

Table 2. The best non–linearity Nf and autocorrelation ACf obtained with the use of

CA with the CA size equal to 8 cells, in 1000 experiments for each time step. The

rules are selected from the set of rules with the neighborhood radius r = 1

The table presents for each rule the following results: minimal guaranteed

values of non-linearity Nf and autocorrelation ACf , three highest quality val-

ues of (Nf , ACf ) observed in each set of experiments, and three lowest quality

(Nf , ACf ) observed in each set of experiments. The guaranteed values pre-

sented in Table 2 mean that in all experiments we could not find the value for

Nf less than 90, and the value for ACf not greater than 112. The highest and

lowest qualities presented in the 3-rd and 4-h columns of Table 2 correspond to

single experiments, selected from all sets of 1000 experiments. One can see that

the highest quality of non-linearity is equal to 110 and corresponds to rule 30.

Low level of autocorrelation for this rule is also provided. On the other hand,

rule 149 is characterized by the best value of autocorrelation equal to 44, with

high level of non–linearity.

In [10], [7] for the same range of S–box, S–boxes were found with the values of

Nf ranging from [80, 100] and [90, 100], respectively. The best autocorrelation

values ACf presented in [10], [7] are equal {98, 100} and {80, 102}, respectively.
If we compare these results with our results we can conclude that (a) even our

guaranteed values of (Nf , ACf ) are comparable with their results, and (b) our

best results are better than those pointed in their study.

Our guaranteed values of Nf equal to {90, 91} for the appropriate CA rules

are included in the ranges of non–linearity values presented in [10], [7]. Simi-

larly, our guaranteed values of ACf equal to {96, 100, 104, 112} for the appro-

priate CA rules are comparable with their best results.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 18/10/2024 17:30:04

UM
CS



38 MirosÃlaw Szaban, Franciszek Seredynski

On the other hand, our best results presented in the 3-rd column of Table

2 characterized by much higher values of non–linearity Nf (110, 108, 108 and

109 for the appropriate CA rules) are better than the value equal to 100 found

in [10], [7]. Also, the best results of autocorrelation ACf presented in the 3-rd

column of Table 2 characterized by much lower values (48, 48, 48 and 44 for

the appropriate CA rules) are better than those equal to 98 and 80, presented

in [10], [7], respectively.

Fig. 6. Frequency (in %) of distribution of non–linearity for the tested CA with rules:

30, 86, 135, and 149. The number of experiments is equal to 1000, CA size and CA

time steps are equal to 100

In our all experiments CA–based S–box gives different results in single exper-

iments (better or worse). Despite these results, important property is frequency

of distribution in the calculated results. Figs 6 and 7 show frequency (in %) of

distribution for the obtained non–linearity and autocorrelations in 1000 experi-

ments, respectively. One can see that most of the obtained results for Nf range

in [98, 108] and [52, 84] for ACf . These ranges of Nf values keep better quality

than ranges [80, 100] and [90, 100] for the results of non–linearity presented in

[10], [7]. Also, most of our results concerning autocorrelation ACf (ranging in

[44, 112]) are better than results 98 and 80 presented in [10], [7], respectively.
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Fig. 7. Frequency (in %) of distribution of autocorrelation for the tested CA with

rules: 30, 86, 135, and 149. The number of experiments is equal to 1000, CA size and

CA time steps are equal to 100

Fig. 8. Frequency (in %) of distribution for non-linearity in our CA-based S-boxes

with rules: 30, 86, 135, 149 and Clark et al. results [7]
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Frequency of distribution in our results and those given by Clark et al. [7]

are presented in Fig. 8. One can see that in the Clark’s results most S–boxes

give their values of non–linearity in the range [96, 98] and the best S–boxes give

non–linearity equal to 100. Our results provide most of CA–based S–boxes with

non–linearity in the range [98, 108] and the best CA–based S–boxes give values

even equal to 110.

Let us observe non–bijective S–boxes. These 8 ×m S–boxes, from 8 inputs

provide m outputs (m = 2, 3, 4, 5, 6, 7). When we observe how quality changes

for not bijective S–boxes, proposed in literature ([10], [11], [7] and [12]), we

can conclude that there exists a relationship between the values of non–linearity

and the autocorrelation of the best S–boxes and a number of output bits. If

a number of output bits grows, then quality of S–boxes goes down (i.e., the

value of non–linearity goes down and the value of autocorrelation grows). For

these observations we can conclude that non–linearity and autocorrelation of

our proposed CA, which realize the S–box functions provide higher values than

some values obtained in [10], [11], [7] and [12], also for 8 ×m S–boxes. Our

best CAs (see Table 2) maintains higher quality (higher non–linearity, lower

autocorrelation) than the result (108, 56) presented in [7] and the result (110,56)

presented in [12] for 8× 5 S–boxes.

7. Conclusions and Future Work

The paper presents a new idea of creating S–boxes using the CA approach.

Applying CA to create S–boxes eliminates inefficient tables which are used in

the classical approach. CA from the input block of bits generates the output

block of bits and this output is evaluated by the same examination criteria as the

traditional S–box. The obtained preliminary results are very promising. The

experiments have shown that the CA–based S–box is characterized by a high

non–linearity and low autocorrelation. These values correspond to those related

to the classical S–boxes or outperform them. The open issue is the question

of enlarging the maximal value of the number of possible output values of the

CA–based S–box. This issue is the subject of current research.
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