

Annales UMCS Informatica AI 5 (2006) 227-236
Annales UMCS

Informatica
Lublin-Polonia

Sectio AI
http://www.annales.umcs.lublin.pl/

Counting solutions of equations over two-element algebras

Jacek Krzaczkowski*

Institute of Computer Science, Maria Curie-Skłodowska University,
Pl. M. Curie-Skłodowskiej 5, 20-031 Lublin, Poland

Abstract

Solving equations is one of the most important problems in computer science. Apart from the
problem of existence of solutions of equations we may consider the problem of a number of
solutions of equations. Such a problem is much more difficult than the decision one. This paper
presents a complete classification of the complexity of the problem of counting solutions of
equations over any fixed two-element algebra. It is shown that the complexity of such problems
depends only on the clone of term operations of the algebra and for any fixed two-element algebra
such a problem is either in FP or #Pcomplete.

1. Introduction
One of the most important questions in computer science is if P is equal to

NP. It is well known that if P ≠ NP then in NP there exists a problem which is
neither in P nor NP-complete. Independently of the fact whether P is equal to NP
or not, there exist numerous natural classes of problems such that every problem
in such a class is either P or NPC. One of the best known such classes of
problems is the Constraint Satisfaction Problem over a two-element [1] and
three-element [2] domains. Another such a class of problems is solving
equations over two-element algebras [3].

Similarly, there exist classes of counting problems whose members are either
in FP or #P-complete (e.g. #CSP over two- and three-element domain [4,5]).
This paper presents the classification of complexity of problems of counting
solutions of equations over fixed two-element algebra which is one of such
classes of problems.

Another interesting fact is that if we fix a two-element algebra A, then the
complexity of problems considered in this paper can be deduced from a termal
clone of A. The same feature is exhibited by the decision problem of existence
of solution of equations over fixed two-element algebra [3]. Unfortunately, the

*E-mail address: krzacz@ii.uj.edu.pl

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 15/02/2026 01:48:21

UM
CS

Jacek Krzaczkowski 228

computational complexity of solving equations over a fixed finite algebra in
general does not depend only on termal clone of this algebra.

Example 1.1. Solving equations of polynomials over (S3, B) is in P ([6]) and the
same problem over (S3, B, [,]), where [x, y] = x-1 B y-1 B x B y, is NP-complete
([7]). Of course, Clo(S3, B) = Clo(S3, B, [,]).

2. Counting class #P and #P complete problems
#P as the class of the computational complexity of counting problems was

introduced by Valiant in [8]. We assume the following definition of #P (this
definition comes from [9]):

Definition 2.1. Counting problem connected with a binary relation Q is a
problem of a number of y, such that (x,y)∈Q for given x.

#P is a class of counting problems connected with any binary relation Q
fulfilling the following conditions:

– there is a polynomial-time algorithm to determine, for given x and y, if
(x, y)∈Q,

– there exists a constant k∈ù, such that for all (x, y)∈Q, |y| ≤ |x|k.
To define #P-completeness we need a definition of reduction. We assume the

definition from [9]:

Definition 2.2. Let A and B belong to #P. The reduction from A to B is called a
pair of functions R and S such that:

– for every x an instance of the problem A, R(x) is an instance of the problem
B,

– if N is a proper answer for the problem B with the instance R(x), then S(N)
is a proper answer for the problem A with the instance x.

In the end of this section we define what it means that the problem is #P-
complete.

Definition 2.3. The problem A∈#P is #P-complete if for all problems B∈#P
there is a reduction from B to A.

3. Definitions
In this paper we use the following standard definition of terms over the

algebra A = (A, f1,…, fk):
– variables are terms,
– if T1,…, Tn are terms and i∈{1,…, k}, then fi(T1,…, Tn) is a term.
Similarly, we define polynomials:
– variables are polynomials,

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 15/02/2026 01:48:21

UM
CS

Counting solutions of equations over two-element algebras 229

– constants are polynomials,
– if P1,…, Pn are polynomials and i∈{1,…, k}, then fi(P1,…, Pn) is a

polynomial.
A clone on a set A is a set of finitary operations on A that contains the

projection and is closed under composition of operations.
Clo(A) denoted the clone of term operations on the algebra A, i.e. the clone

generated by the set of basic operations of A.
Pol(A) denoted the clone of polynomial operations of the algebra A, i.e. the

clone generated by the set of basic operations of A along with all of the constant
operations on the set A.

Definition 3.1. A problem for an algebra A will be called

– clone-determined iff for every algebra B such that Clo(A) = Clo(B) the
problem for A and B is polynomially equivalent.

– not clone-determined otherwise.
Clones on the fixed set constitute a lattice. The clones on the two-element set

were classified by Post, see [10]. We use the original Post’s notation for clones.
Obviously, every term T is equivalent to some operation t from Clo(A) and

every polynomial P is equivalent to some operation p from Pol(A). We say that
equation between terms over A = (A, f1,…, fk) in the form T1(x1,…, xn) =
T2(x1,…, xn) is satisfiable iff there a exists function s: {x1,…, xn}→A, such that
t1(s(x1),…, s(xn)) = t2(s(x1),…, s(xn)), where t1, t2∈Clo(A) are operations
equivalent to terms T1 and T2. Such a function s is called solution. We may
similarly define the solution for equations between polynomials and equations
between a term and a constant.

In this paper we will consider problems where the question is how many
solutions the given equation has got. Defining three main problems we consider.

Definition 3.2. #TERM-SAT(A) is a problem of a number of solutions of
equations between term over an algebra A.

Definition 3.3. #POL-SAT(A) is a problem of a number of solutions of
equations between polynomials over an algebra A.

Definition 3.4. #TERMC-SAT(A) is a problem of a number of solutions of
equations between term and constant over an algebra A.

We will prove that #TERM-SAT(A), #POL-SAT(A), #TERMC-SAT(A) for a
two-element algebra A is clone-determined. Moreover, it is either #P-complete
or FP.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 15/02/2026 01:48:21

UM
CS

Jacek Krzaczkowski 230

4. #TERM-SAT
In this section we will show a main theory of our paper which gives us a

classification of a complexity of #TERM-SAT(A) for any two-element algebra.
All proofs of #P-completeness of the considered problems for some classes of

algebras in this paper use the fact that there exist terms over these algebras
equivalent to some special functions (for example ∨, ∧ or ¬). But the fact that
there exists the term equivalent to such functions is not sufficient – this term
must have a suitable form. The following example is a good illustration of this
fact:

Example 4.1. Consider an algebra (2,NAND) and the following terms:

– t(x,y) = (x NAND y) NAND (x NAND y) ≡ x ∧ y,
– h(x,y,z) = (x NAND y) NAND (z NAND (z NAND z)) ≡ x ∧ y (h does not

depend on z).
Now, if we want to express the function x1 ∧ x2 ∧ … ^ xn using the term t we

obtain an expotentially longer expression, but if we use the term h the obtained
expression will be only linear longer than the original one.

In the following there is a very useful definition:

Definition 4.2. Let T(x1,…, xn) be a term over an algebra A and t be a function
belonging to Clo(A).
We say that T is frugal iff for all xi, such that t(x1,…, xn) depends on xi, xi occurs
in T only once.

Moreover, we say that the function f∈Clo(A) is frugally definable over A if

there exist any frugal term T over A which is equivalent to f. Such a term will be
called a frugal definition of f. Observe that if in a term containing functions
f1,…, fn any of these functions will be replaced by an equivalent frugal term, the
obtained term will be equivalent to the original one and at most polynomially
longer.

To prove the main theory of this paper we will need the following two
lemmas:

Lemma 4.3. If Clo(2, f1,…, fn) = Clo(2,∧,¬), then ∧, ∨ and ¬ are frugally
definable over (2, f1,…, fn).

Lemma 4.4. If Clo(2, f1,…, fn) = Clo(2,∧,∨,0,1), then ∧ and ∨ are frugally
definable over (2, f1,…, fn).

Proofs of these two lemmas are a simple conclusion from the proofs of
Theorem 7 and Theorem 16 in [3].

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 15/02/2026 01:48:21

UM
CS

Counting solutions of equations over two-element algebras 231

Lemma 4.5. Let A be a two-element algebra such that one of the following
holds:

– () ()5 2,F Clo ki Clo∞ = ⊂ A ,
– () ()1 2, dualF Clo ki Clo∞ = ⊂ A

then #TERM-SAT(A) is #P-complete.
ki(x, y, z) = x ∧ (y → z)
kidual(x, y, z) = ¬ki(¬x, ¬y, ¬z)

Proof: We will prove the first case only. The proof of the dual case is very
similar.

Assume that A = (2, f1,…, fn). Observe that Clo(2, ki, 0, 1) = Clo(2,∧,¬)
which implies that Clo(2, f1,…, fn, 0, 1) = Clo(2,∧,¬). By Lemma 4.3 we have
that ∧, ∨ and ¬ are frugally definable over (2, f1,…, fn, 0, 1). Moreover, there
exists a term over A which is equivalent to the operator ki(x, y, z) but we do not
now if this term is frugal or not.

Now we show the reduction from #SAT to #TERM-SAT(A). First, the
reduction for the given CNF-formula S creates the term R by replacing in S
every occurrence of ∧, ∨, ¬ by frugal terms over (2, f1,…fn, 1, 0) equivalent to
them. Next, the reduction replaces every occurrence of 1 and 0 in R by x and y
(without loss of generality we may assume that x and y do not occur in R).
Denote such a new term by S’. At the end the reductions return the following
equation:
 ()()1, ' , , ,..., ,nki x S x y z z y x¬ = (1)
where, in fact, instead of ¬ there is used a suitable term over Clo(2, f1,…, fn,0,1)
with x and y in a place of 1 and 0.

The second part of the reduction, transforming N, number of solutions of the
equation above, to number of assignments satisfying the formula S, working as
the following:

– if N is a power of 2, then the reduction returns N/4 (observe that it is easy
to check if a given number is power of 2).

– otherwise the reduction returns 2 2log log 12 2N NN −⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦− − (it may be
computed in polynomial deterministic time).

To see that the presented reduction is proper, consider following three cases
of solutions of the equation:

– x = 0 – in this case the equation is satisfied with all assignment of other
variables. There are 2n+1 solutions with x = 0,

– x = 1 and y = 1 – in this case similarly to the previous one the equation is
satisfied with all assignments of z1,…, zn. There are 2n solutions with x = 1
and y = 1.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 15/02/2026 01:48:21

UM
CS

Jacek Krzaczkowski 232

– x = 1 and y = 0 – in this case the equation is satisfied iff ¬S’(x, y, z1,…, zn)
= 0. Notice that because x = 1 and y = 0, ¬S’(x, y, z1,…, zn) = 0 iff
assignment of z1,…, zn satisfies the formula S. Denote the number of
assignments satisfying the formula S by M. Of course, M ≤ 2n.

Adding up solutions of the equation we obtain N = 2n+1 + 2n + M. Observe
that N is power of 2 iff S is a tautology and in this case N = 2n+2 = 4 ⋅ 2n = 4 ⋅ M.
Otherwise, 2 2log log 112 2 2 2N Nn nM N N −⎢ ⎥ ⎢ ⎥+ ⎣ ⎦ ⎣ ⎦= − − = − − .

To complete the proof, note that both parts of the reduction work in a
polynomial deterministic time. 

Lemma 4.6. Let A be a two-element algebra such that one of the following
holds:

– () () ()6 12, 2, , ,1,0F Clo ka Clo Clo A∞ = ⊂ ⊂ ∧ ∨ =A ,�
– () () ()2 12, 2, , ,1,0dualF Clo ka Clo Clo A∞ = ⊂ ⊂ ∧ ∨ =A �

then #TERM-SAT(A) is #P-complete.
ka(x, y, z) = x ∧ (y ∨ z),
kadual(x, y, z) = ¬ka(¬x, ¬y, ¬z).

Proof: We will prove the first case only. The proof of the dual case is very
similar.

Assume that A = (2, f1,…, fn). Note that Clo(2, ka,1,0) = Clo(2,∧,∨,1,0) which
implies that = (2, f1,…, fn,1,0) = Clo(2,∧,∨,1,0). By Lemma 4.4. we have that ∧
and ∨ are frugally definable over (2, f1,…, fn,1,0). Moreover, over A exists a
term equivalent to ka, but we do not know if this term is frugal.

First, consider the following term:
 () () ()(), ', ' 'W z z t z z z z t= ∧ ∨ ∨ ∧ .

Observe that W depends on t only if z ≠ z’. Obviously W is frugally definable
over (2, f1,…, fn,1,0).

Define W’(x, y, z, z’, t) obtained by replacing every occurrence of 1 and 0 in
W by x and y. Furthermore, we denote by ∧’ and ∨’ the terms over A obtained
from frugal terms over (2, f1,…, fn,1,0) equivalent to ∧ and ∨, by replacing every
occurrence of 1 and 0 by x and y.

Now, we are ready to define reduction from #SAT to #TERM-SAT(A). For a
given CNF-formula S, the reduction returns the following equation:

()()()()()' ' ' '
1 1 1 1' , , , , ' ... ' , , , , ' , , ,..., , ,...,k k k kx x W x y z z W W x y z z S x y z z z z x∧ ∨ = , (2)

where S’(x, y, z1,…, zk, '
1z ,…, '

kz) is received from S by replacing every
occurrence of ∧, ∨ and ¬zi by ∧’, ∨’ and '

iz for i∈{1,…, n}.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 15/02/2026 01:48:21

UM
CS

Counting solutions of equations over two-element algebras 233

Assume that N is a number of solutions of the above equation. The reduction
computes a number of assignments satisfying the formula S using the following
formula:
 2 2 2 2 2 2log log 1 log 3 log 4 log 5 log 2 22 2 2 2 2 ... 2N N N N N NM N − − − − −⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦= − − − − − − − .

Certainly, the reduction works in a polynomial deterministic time. To prove
correctness of the reduction we need to consider the following five cases:

– x = 0 – in this case the equation is satisfied with all assignments of other
variables (there exist 22k+1 such solutions),

– x = 1 and y = 1 � in this case the equation is satisfied with all assignments
of other variables too (there exist 22k such solutions),

– x = 1, y = 0, zj = '
jz = 1 for some j and zi ≠ zi for 1 ≤ i < j – there are 22k−2 +

22k−3 + … + 2k−1 such solutions of the equation,
– x = 1, y = 0, zj = '

jz = 0 for some j and zi ≠ zi for 1 ≤ i < j – in this case the
equation is not satisfied.

– x = 1, y = 0 and zi ≠ zi for all i∈{1,…, k} – in this case the equation is
satisfied iff S’(x, y, z1,…, zk, '

1z ,…, '
kz) = 1. Because x = 1 and y = 0 and zi

≠ '
iz for all i it occurs only if assignments of z1,…, zk satisfy the formula S.

Now, we leave completion of the proof to the reader. 

Lemma 4.7. Let A be a two-element algebra such that one of the following
holds:

– Clo(A) = Clo(2, d),
– Clo(A) = Clo(2, d, +3),
– Clo(A) = Clo(2, d, ¬).

then #TERM-SAT(A) is #P-complete.
d(x, y, x) = (x ∨ y) ∧ (x ∨ z) ∧ (y ∨ z),
+3(x, y, z) = x + y + z.

Proof: Assume that A=(2, f1,…, fn). Obviously, d∈Clo(A). For all i∈{1,…, n}
the following holds: fi(x1,…, xl) = ¬f(¬x1,…,¬xl). It is easy to see that all
f∈Clo(A) retain this property which implies that for all terms over A we have
that:
 () ()1 11,0, ,..., 1 1,0, ,..., 0l lT x x T x x= ⇔ ¬ ¬ = . (3)

Consider the following equation:
 ()()1, , , , ,..., kd p q T p q z z p= (4)

Observe that if p = q then the equation is satisfied (the equation has 2k+1 such
solutions). If p ≠ q then above equation is satisfied iff the following equation is
satisfied:
 ()1, , ,..., kT p q z z p= . (5)

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 15/02/2026 01:48:21

UM
CS

Jacek Krzaczkowski 234

We will reduce #SAT to #TERM-SAT(A). Let S be a CNF-formula. Our
reduction depends on algebra A and we have to consider the following two
cases:

– Clo(2, f1,…, fn,0,1) = Clo(2, d,0,1) = Clo(2,∧,∨,0,1) – in this case by the
Lemma 4.4. we can frugally define function t1 such that t1(1,0,z,w) = z ∧ w
(observe that t1(0,1,z,w) = z ∨ w). The first part of the reduction for the
formula S returns equation 4, where T is the term on the left side of
equation 2 from the proof of Lemma 4.6. in which every occurrence of ∧’,
∨’ is replaced by t1(p,q,z,w), t1(q,p,z,w).

– Clo(2, f1,…, fn,0,1) = Clo(2, d,+3,0,1) = Clo(2, d,¬,0,1) = Clo(2,∧,¬) – in
this case by Lemma 4.3. we can frugally define functions t1 and t2 such that
t1(1,0,z,w) = z ∧ w (obviously, t1(0,1,z,w) = z ∨ w) and t2(0,1,z) = t2(1,0,z) =
¬z. The first part of the reduction for the formula S returns equation 4,
where T is a term on the left side of equation 1 from the proof of Lemma
4.5. Similarly to the previous case, we use t1(p,g,z,w), t1(q,p,z,w), t2(q,p,z)
instead of ∧, ∨, ¬.

The second part of the reduction is a small modification of one in the proofs
of Lemma 4.5. and Lemma 4.6. The difference is that counting solutions of the
equation 4 we have to consider the case when p = q and the fact that T has the
same number of solutions in both cases, when p = 1, q = 0 and p = 0, q = 1. The
rest of the proof is obvious and we leave it to the reader. 

Theorem 4.8. Let A be a two-element algebra such that one of the following
holds:

– ka∈Clo(A),
– kadual∈Clo(A),
– d∈Clo(A).

then #TERM-SAT(A) (#POL-SAT(A)) is #P-complete. Otherwise, #TERM-
SAT(A) (#POL-SAT(A)) is in FP.
ka(x, y, z) = x ∧ (y ∨ z),
kadual(x, y, z) = ¬ka(¬x, ¬y, ¬z),
d(x, y, z) = (x ∧ y) ∨ (y ∧ z) ∨ (x ∧ z).

Proof: First, we will prove the theorem for #TERM-SAT(A). If ka∈Clo(A) or
kadual∈Clo(A), then the #P-completeness of #TERM-SAT(A) is implied by
Lemma 4.5. and Lemma 4.6. The case if ka∉Clo(A) and d∈Clo(A) is considered
in Lemma 4.7. At the end, there are only few cases left and for them the proof of
containing in FP is obvious.

To prove the theorem for #POL-SAT(A) where A = (2, f1,…, fn), it is enough
to consider #TERM-SAT(A’), where A’ = (2, f1,…, fk,0,1). 

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 15/02/2026 01:48:21

UM
CS

Counting solutions of equations over two-element algebras 235

Conclusions
Using the Theorem 4.8. we may prove easily the theorem characterizing

computational complexity of #TERMC-SAT(A):

Theorem 5.1. Let A be a two-element algebra such that:
– ki∈Clo(A),
– kidual∈Clo(A).

then #TERMC-SAT(A) is #P-complete. Otherwise #TERM-SAT(A) is in FP.
ki(x, y, z) = x ∧ (y → z),
kidual(x, y, z) = ¬ki(¬x, ¬y, ¬z).

Proof: #P-completeness of the above cases is an easy conclusion from the
proofs of Lemma 4.5. and Lemma 4.6. It is enough to replace by 1 the variable x
on the right side of the equations returned by reductions and slightly modify
algorithm computing the number of assignments satisfying the CNF-formula.

If Clo(2, d) = Clo(A) = Clo(2, d, ¬), then for all f basic operations A, we have
that f(x1,…, xn) = ¬f(¬x1,…,¬xn). This fact implies that every equation on the
form:
 ()1,..., kT x x c= .
where c∈2 and T is a term over A, has exactly 2k−1 solutions. So to count
solutions it is enough to count variables occurring in the equation and #TERMC-
SAT(A) is in FP.

In all other cases #TERMC-SAT(A) is by theorem 4.8 in FP. It is because
equations between a term and a constant are a special case of equations between
two polynomials. So if #POL-SAT(A) is in FP, then #TERMC-SAT(A)
is in FP. 

Similarly to the #TERM-SAT(A), #POL-SAT(A), #TERMC-SAT(A) we may
define similar problems for the systems of equations #STERM-SAT(A), #SPOL-
SAT(A), #STERMC-SAT(A).

Theorem 5.2. Let A be a two-element algebra such that Clo(A)∈Clo(2,+,¬) =
L4 then #TERM-SAT(A), #POL-SAT(A) and #TERMC-SAT(A) are in FP.
Otherwise those problems are #P-complete.

Proof: This theorem is a simple conclusion of the results obtained by Creignou
and Herman [4]. 

From Theorem 4.8 we have that in most difficult cases in theorem 5.2, one
equation it is enough to make the problem #P-complete. Only new hard cases
that it is (2,∨), (2,∨,0), (2,∨,1), (2,∨,0,1), (2,∧), (2,∧,0), (2,∧,1), (2,∧,0,1). It is
easy to see that in these cases if we fix the maximum allowed number of

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 15/02/2026 01:48:21

UM
CS

Jacek Krzaczkowski 236

equations in the system of equations, the problem of counting their solutions is
in FP.

References

[1] Scheafer T., The complexity of satisfiability problems, Proceedings 10th ACM Symposium on
Theory of Computing (STOC’78), (1978) 216.

[2] Bulatov A., A dichotomy theorem for constraints on a three-element set, Proceedings of 43rd
IEEE Symposium on Foundations of Computer Science (FOCS’02), Vancouver, Canada,
(2002) 649.

[3] Gorazd T.A., Krzaczkowski J., Solving equations over two-element algebras, manuscript,
(2005).

[4] Creignou N., Hermann M., Complexity of generalized satisfiability counting problems,
Information and Computation, 125(1) (1996) 1.

[5] Bulatov A., Dalmau V., Towards a dichotomy theorem for the counting constraint satisfaction
problem, Technical Report PRG-RR-03-12, Computing Laboratory, University of Oxford,
Oksford, UK, (2003).

[6] Horv’ath G., Szab’o C., Checking identities in finite groups, manuscript, (2004).
[7] Idziak P.M., private comunication.
[8] Valiant L.G., The complexity of computing permanent, Theoretical Computing Science, 8

(1979) 189.
[9] Papadimitrou Ch.H., Computational Complexity, Adison-Wesley, (1994).
[10] Post E., The Two-valued Iterative Systems of Mathematical Logic, Annals of Mathematics

Studies, Princenton University Press, 5 (1941).

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 15/02/2026 01:48:21

UM
CS

Pow
er

ed
 b

y T
CPDF (w

ww.tc
pd

f.o
rg

)

http://www.tcpdf.org

