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Abstract 
The progress of technical abilities of computers creates enables the use of still more elaborated 

computational techniques. The classical examples are here the Monte-Carlo or the Molecular 
Dynamics simulations which are the sensible alternative to study even quite complicated 
structures. In this work we want, however, to deal with the problems which may be described as 
the optimization questions and from the algorithmical point of view are NP-hard problems. The 
typical problem studied is here the searching for the ground states of different magnetic systems. 
In the presented paper we pay the attention to the samples described by the Ising hamiltonian and 
want to show the use of evolutionary algorithm not only in finding the ground state but also as a 
tool to look for the minimum energy state at different temperatures. 
 

1. Introduction 
Physics offers to people dealing with algorithmical problems a great number 

of possibilities. From one point of view it offers a lot of problems which are 
computationally hard and may act as a good testing area for new numerical 
techniques and on the other hand it may influence the emergence of new ways of 
problems solving. The crucial example of widely spread idea of physical origin 
is the simulated annealing which comes from the Metropolis’ work on equation 
of state calculations. 

In this paper only a small area of the above mentioned applications will be 
presented. We want to focus first of all on the problems of optimization 
understood as a finding minimum or maximum value of some parameter 
characterizing the physical system or the result of measurement performed on it. 
Certainly there can be numerous ways of approaching these problems but the 
usual discrimination is into the two classes of problems, those which can be 
solved using local optimization techniques and those which need an alternative 
method. Whereas the local optimizations are usually based on classical 
deterministic methods like Newton-Raphson, conjugate gradients or even simple 
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gradient, the second set of problems is inaccessible for this well-defined type of 
computation. The main reason for it is the multidimensionality of search space 
and the existence of a lot of locally acceptable solutions described in the 
language of basins of attraction. This causes the necessity of using the 
randomized heuristic methods. 

Currently a lot of methods of global optimization are used. They are, 
however, based on a few basic methods and detailed solution is usually slightly 
specialized to follow the requirements of the problem studied or hybridized to 
fully exploit the advantages of a few methods. Among the most frequently used 
global optimization techniques one should mention: Simulated Annealing, 
Genetic (Evolutionary) Algorithm, Taboo Search or Ant Colony Optimization. 
Because the last two methods are suitable rather for discrete problems in the 
most physical applications it can be found either SA or GA or the mixture of 
both them. 

The GA technique which is the point of interest of this work has been, very 
widely used to study different issues for about ten years. It should be pointed out 
that the method itself is much older. It was proposed independently by two 
authors [2,3] but its rapid progress is connected mainly with the growth of power 
of computers required by the relatively big amount of memory and a large 
number of calculations performed during the optimization process. The short 
sketch over its application in the area of physics has to enclose such different 
fields like superconductivity [4], geophysics [5], surface reconstruction study 
[6], quantum mechanical calculations of semiconductor microstructure [7] or 
analysis of experimental data from X-ray spectrometry [8,9] and LEED [10]. 

A very specific area of global optimization in solid state physics is the 
determination of cluster structures due to its clear understanding as a energy 
minimization process. The crucial role is played here by the interaction potential 
which allows to try to find the minimum energy for such different structures as 
water clusters [11], metals [12,13], fullerenes [14]. 

In this paper we focus on the application of global optimization methods to 
magnetic systems. Its construction as a set of well defined values (or values from 
well defined interval) distributed on the n-dimensional cubic cellular net has an 
effect on almost ideal transformation to the data representation needed by the 
genetic algorithms. Considering the well known Ising model in which we have 
only two types of spin we may notice that simple mapping onto {0,1} the set of 
values allows to use the classical GA with the binary representation. Certainly 
for the most complicated systems this historical approach is not sufficient but the 
discretization of configuration space as well as possible single cell states enables 
simple application of this method. 

The genetic approach to magnetic problems started with the work of 
Anderson and et. al. devoted to the optimization of ground state of ferromagnetic 
system[15]. Since then the studies have followed a few directions. One of them 
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is the analysis of ground states of samples especially those described by more 
complicated spin interaction like spin glasses characterized by randomized 
exchange constants and thus leading to antiferromagnetic coupling. The seminal 
works come in this topic from Hutton et al. [16] and Hartmann[17]. From the 
paper of Maksymowicz et al. [18] a less developed branch concerning the 
thermodynamical study of magnetic models started. This work also belongs to 
this group. 

 
2. Basics of optimization procedure 

Consider the d-dimensional simple cubic Ising sample i.e. the system 
described by the following assumptions. In each of the Ld positions (where L is 
the linear size of the sample) there can be stored one spin with the discrete set of 
values  
{-1,+1}. Certainly these values reflect the only two possible states of spin: up 
and down. The internal energy of this system is described by the simplest Ising 
interaction hamiltonian: 
 i j

ij
H J S S= − ∑ . (1) 

As it can be seen in our calculations only the interaction with the nearest 
neighbours, as was proposed in the original paper by Ising. A few elements 
which are usually present in the contemporary models are omitted here like the 
next-nearest neighbour interactions, biquadratic or anisotropic terms or the 
influence of external field. However, this simplified approach makes it possible 
to compare the results with those obtained in the other type of calculations 
including the analytical ones obtained by Onsager. The exchange integral J was 
chosen positive in order to have ferromagnetic material (J = 1). 

The crucial point in the thermodynamical calculations is that we do not need 
to minimize the internal energy but the Gibbs free energy, which is related to the 
temperature through entropy: 
 U H TS= − . (2) 

The entropy calculation will be performed according to the approximation 
proposed by Bukman [19] and applied by Balcerzak [20] based on its expansion 
into a series of cumulants: 
 ...i ij ijk

i ij ijk
S σ σ σ= + + +∑ ∑ ∑� � �  (3) 

which has to be obtained from the Shannon entropies calculated for the 
respective n-spin term. Whereas the detailed description of the algebra used may 
be found in the seminal works here only the most important features of this 
approach will be briefly presented. The relation between the n-spin entropy and 
the n-spin cumulant is as follows: 
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After rejecting the higher order terms and restricting the calculations to the 
second term corresponding to the pair approximation there can be performed the 
summation over all single spins and pairs of spins leading to the formula: 

 ( )2 11
2
zS N zσ σ⎛ ⎞= − −⎜ ⎟

⎝ ⎠
. (5) 

When compared to the earlier formulas some simplifying replacements have 
been made here: N = Ld is the number of spins, σi-> σ1, σij-> σ2 and z is the 
number of nearest neighbour which for the sc sample is equal to z = 2n. The 
approach presented above allows to determine the minimum free energy 
configuration for the given temperature expressed in kB units and as a result 
other characteristic features like phase transition point. The details of the 
procedure leading to the phase transition temperature determination are not 
presented here, the reader can find them in [21]. 

In the calculations we used the population formed by 50 individuals in the 
real number representation. This is certainly a different approach as compared 
with the bit representation described earlier, but it is more general thus allowing 
to study more complicated spin systems with the same code. It does not also 
exceed even for quite great samples the technical properties of computer and can 
save some time usually devoted to the process of decoding of bit string. In the 
selection phase the elitistic, exponential function of the form known from the 
cluster calculations is used: 

 ( ) ( ) min

max min

exp
G G

fit
G G

Ω
Ω α

⎛ − ⎞
= −⎜ ⎟−⎝ ⎠

. (6) 

 
3. Results and conclusions 

Let us initially concentrate on the two-dimensional sample and compare the 
results obtained using the evolutionary optimization with well known theoretical 
solution. It is presented in Fig. 1, where the dependence of order parameter m 
identical with magnetization at the temperature is presented. The solution 
obtained about 60 years ago by Onsager is presented as a solid line. The plots 
shown in this figure lead to some general conclusions. First of all, the utility of 
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this method when applied to simple magnetic systems is confirmed. The phase 
transition point is easy to determine, however, it lies distinctly higher than the 
theoretical one. It should be stressed that this behaviour may be easily explained 
as the effect of pair approximation used to calculate the entropy. Because this 
simplest model may be also studied analytically, and such calculations have 
been recently performed [20], it is possible to compare our results with them 
ones. This comparison is not presented here but the main result interesting from 
the point of view of our calculations is that pair approximation adapted to the 1/2 
spin systems produces an overestimated result for the critical temperature. So the 
result itself is physically not interesting but the model is an interesting testing 
tool for evolutionary algorithm implementation.  
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Fig. 1. The temperature dependence of magnetization for the two-dimensional Ising model  

in the pair approximation. The absence of size effect is visible. Solid line corresponds  
to the correct solution and Tc = 2.269 

 
The more interesting feature comes from the comparison of sets of points 

obtained for different sample sizes. The usual effect in the simulations of 
thermodynamical processes is the existence of size effect, which leads to scaling 
of as well phase transition temperature as critical coefficients. This feature is not 
observed on our plot although the sizes of samples (Ld) are modified in a range 
of one order (256-2500). 

The next plot presents the magnetization dependence on temperature for the 
samples with different dimensionality. Because of the above mentioned lack of 
relation between the size of sample and the magnetization shape curvature 
relatively small systems were chosen (d = 2, L = 16, N = 256; d = 3, L = 12,  
N = 1728; d = 4, L = 6, N = 1296). 

Although everyone at least a little familiar with the problems of magnetism 
can enumerate some samples which can be described as a one-dimensional spin 
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chain or a flat 2D system and three dimensions if the usual dimensionality is to 
study the real problems , the calculation for d = 4 seems to be useless. Such an 
opinion is, however, not valid for a few reasons. The Ising model and its 
modifications are a very popular area to test a lot of attempts designed for the 
phase transition study. The dimension d = 4 is a special value for these 
investigations because this is so called upper critical dimension. For the samples 
with all dimensionalities higher than UCD the critical coefficients should have 
the same value. 

Studying the critical properties of d-dimensional Ising sample we will focus 
on the critical exponent β which is defined according to the well known formula: 
 ( )Cm T T β= −  (7) 
and describes the behaviour of order parameter in the vicinity of phase transition 
temperature. 
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Fig. 2. Magnetization dependence on temperature for the samples with different  

dimensionalities (d = 2,3,4) 
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All plots shown in the above figure present the similar behaviour: the 
overestimation of critical temperature and the change order parameter 
dependence character leading to incorrect value of β. The values from the 
analytical or simulational solutions are compared with those obtained in our 
optimization. 
 

Table 1. The critical properties for two-,three- and four-dimensional Ising model obtained using 
the evolutionary optimization for pair approximation 

critical temperature critical exponent β  

other sources EA difference relative 
difference other sources EA 

n = 2 2.27 2.85 0.58 25.50% 0.125 0.63 
n = 3 4.53 4.92 0.39 8.60% 0.30 0.55 
n = 4 6.68 6.95 0.27 4.04% 0.50 0.85 

 

A few observations concerning the critical values can be made. The phase 
transition temperature is for all calculations overestimated but it should be 
pointed out that this difference decreases with dimensionality as well in absolute 
as in relative scale reaching for d = 4 value only about 4%. It would be an 
interesting question how this difference will behave for the samples with the 
dimensionalities exceeding the upper critical dimension. 

One should look at our results from a few different points of view. The first is 
the physical one where the entropy calculations are very interesting. 
Evolutionary computations are a tool which can overcome some difficulties with 
applying higher order corrections to entropy expansion. This is certainly due to 
its character as a “brute force” method. The code dealing with the three-spin 
interaction cumulant in the Bukman’s expression is now in the phase of tests. 
From the point of view of algorithmics and algorithm testing the use of discrete 
magnetic systems with more complicated structure (like triangular systems) 
interaction function or (like spin glasses or samples with other types of 
interaction included) may be very interesting and helpful. 

It can be also stressed that the model presented is very hard when treated as a 
subject of local minimization due to complex character of entropy calculations. 
This difficulty will increase with the increasing order of Bukman’s expansion. 
So the method has to generate the optimum without any help coming from 
possible hybridization of the method. 

I think one can say that the approach presented here is an efficient one. The 
size of search space for the studied samples with about 1000 spins may be 
established approximately as 10300 configurations. The optimum is usually found 
during the first thousand of generations only for greater systems sometimes it 
needs more time. However, during a lot of independent runs there has never 
been a situation when the minimum would not be found through 2000 
generations. This result depends rather on the initial population sampling then on 
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the complexity of problem. The calculation time for the greatest configuration  
(d = 2, L = 50, N = 2500) was only slightly greater than 10 minutes when 
performed on the single Pentium 2.6G processor. 
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