

Annales UMCS Informatica AI 5 (2006) 47-57
Annales UMCS

Informatica
Lublin-Polonia

Sectio AI
http://www.annales.umcs.lublin.pl/

Professionally designed and developed OpenMP parser

for the Ada programming language using flex

Rafał Henryk Kartaszyński*, Przemysław Stpiczyński**

Department of Computer Science, Maria Curie-Skłodowska University,
Pl. M. Curie-Skłodowskiej 1, 20-031 Lublin, Poland

Abstract

This paper describes a new version of OpenMP parser for Ada. AdaOMP consists of: OpenMP
compiler for Ada and Ada package with OpenMP routines and variables. We show how compiler
writing can be improved by the use of professional tool – flex – lexical analyzer, for kernel
creation. In this paper we focus on describing steps leading to parser creation. We will explain
some implementation details and present the results of using the OpenMP parser on sequential
programs.

1. Introduction
OpenMP (Open specifications for Multi Processing via collaborative work

between interested parties from the hardware and software industry, government
and academia) is Application Program Interface (API) that may be used to
explicitly direct multi-threaded, shared memory parallelism [1]. It comprises the
following elements: Compiler Directives, Runtime Library Routines,
Environment Variables. Directives can be embedded within the sequential
program written in C/C++ or Fortran, on multiple system architectures (UNIX,
Windows NT, …).

Ada is a programming language designed to support the construction of long-
lived, highly reliable software systems. It also, what is most important, includes
facility for the support of real-time, parallel and distributed programming
[2,3,4]. Unfortunately, it did not become a popular parallel programming
language [5], because these features are very time consuming and complicated in
use.

To cope with these problems an idea of implementing OpenMP parser for
Ada was born [6] and resulted in creation of AdaOMP. The previous version of

*E-mail address: hatamoto@goblin.umcs.lublin.pl
**E-mail address: przem@hektor.umcs.lublin.pl

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 15/02/2026 01:48:19

UM
CS

Rafał Henryk Kartaszyński, Przemysław Stpiczyński 48

parser, presented in [7], had many drawbacks. Most of them were caused by non
effective approach to compiler programming, i.e. writing its kernel, directly
under C. Version 2.0 has restructured kernel based on professional tool – flex.
Owing to this, all the faults were eliminated and new functionality was added.
Therefore we would like to present AdaOMP: OpenMP parser and Ada package
containing OpenMP functions and procedures. Implemented directives, clauses
and functions are sufficient enough to provide a powerful tool to make parallel
programming under Ada fast and simple.

2. AdaOMP syntax, supported directives and library functions

Let us remind syntax, presented in [6] (which become basis for developing
OpenMP parser for Ada), of OpenMP directives:

pragma omp; -- directive-name [clause] ...
block of code
pragma omp; -- end

Till now the following directives have been recognized and interpreted by
AdaOMP parser:

– parallel
 Code block enclosed in parallel directive (parallel region) is executed

simultaneously by multiple threads,
– parallel for
 is used to split execution of for loop iterations between multiple threads. It

is required that parallel for pragma preceeds for loop directly.
In most practical applications of OpenMP these two directives are sufficient

enough to satisfy most programmer needs. In addition, each directive has also a
set of clauses. The following clauses are available:

– private(variable [, variable])
 variables provided in this clause are set as private in the parallel

region, and are used as scratch storage there,
– shared(variable [, variable])
 behaviour of this clause is opposite to the previous one. Named

variables will be shared among all threads. Variables can be
accessed and modified by all thread,

– default(private | shared | none)
 by default all variables not declared as private are assumed to be shared.

This can be changed by setting default data-sharing to private or none.
When it is none each variable within the parallel region must be named in
shared or private clauses.

– reduction(operation : variable [, variable])
used to identify variables and reduction operations used in parallel regions.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 15/02/2026 01:48:19

UM
CS

Professionally designed and developed OpenMP parser… 49

Apart from OpenMP parser, AdaOMP also provides package including
additional functions and procedures. Package consists of two files
ada_openmp.ads and ada_openmp.adb, and must be included in every
program using Ada OpenMP. This can be achieved by writing the line

 with ada_openmp; use ada_openmp;

at the beginning of Ada program code.
The following functions / procedures are made available:
– function OMP_GET_THREAD_NUM return integer;
 returns thread identifier, which is different for each thread within the

parallel region.
– procedure OMP_SET_NUM_THREADS(t : in integer);
 by default number of threads that are started is determined by

OMP_NUM_PROCS environment variable. If this variable cannot be read
10 is set as default. Before each parallel region this procedure can be used
to set a number of threads within the next parallel regions.

3. New approach to parser implementation

In this article we would like to focus our attention on presenting
implementation of Ada OpenMP parser. Because, as mentioned before, version
1.0 was not flexible enough to assure simple add of new directives and
functionality, we have decided to use flex, lexical analyzer, to ensure this.
Another disadvantage of the previous version, i.e. lack of support of nested
OpenMP directives, was also eliminated by this new approach.

When programming any kind of compiler or parser, for any language, we are
facing three general problems:

1. finding lexical elements of this language (key words: “begin”, “end”…;
identifiers; numbers; …),

2. recognising and checking language grammar expressions – the way lexical
symbols coexist in a particular language,

3. interpreting expressions found in program code, according to suitable
grammatical rules.

Of course each problem requires different approach and solution to above
points can differ. In our case – OpenMP parser – first point is solved by using
flex [8,9].

Lexical analyzer scans standard input (setting yyin variable to FILE pointer
can change this behaviour) for strings matching defined patterns. By providing a
simple set of lexical rules for flex, OpenMP directives, clauses, etc. can be
easily found in Ada program code. For example, following rules can be used to
find OpenMP parallel and parallel for directives with accompanying clauses:

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 15/02/2026 01:48:19

UM
CS

Rafał Henryk Kartaszyński, Przemysław Stpiczyński 50

DIGIT [0-9]
LETTER [a-zA-Z]
BLANK [\t]
IDENT ("_"|{LETTER})({LETTER}|"_"|{DIGIT})*
IDLIST {IDENT}({BLANK}*","{BLANK}*{IDENT})*
PRAGMA "pragma"{BLANK}+"omp"{BLANK}*";"
END "end"
PRAGMAEND {BLANK}*{PRAGMA}{BLANK}*"--

"{BLANK}*{END} {BLANK}*"\n"
PARALLEL "parallel"
PARALLELFOR "parallel"{BLANK}+"for"
PRIVATE "private"
SHARED "shared"
NONE "none"
DEFAULT "default"
REDUCTION "reduction"
PRIVATEDIRECTIVE {PRIVATE}{BLANK}*"("{BLANK}*{IDLIST}

{BLANK}*")"
SHAREDDIRECTIVE {SHARED}{BLANK}*"("{BLANK}*{IDLIST}

{BLANK}*")"
DEFAULTDIRECTIVE {DEFAULT}{BLANK}*"("{BLANK}*({PRIVATE}|

{SHARED}| {NONE}){BLANK}*")"
REDUCTIONDIRECTIVE {REDUCTION}{BLANK}*"("{BLANK}*

{OPERATION}{BLANK}* ":"{BLANK}*{IDLIST}
{BLANK}*")"

PARALLELDIRECTIVES ({PRIVATEDIRECTIVE}|{DEFAULTDIRECTIVE}|
{SHAREDDIRECTIVE}|{REDUCTIONDIRECTIVE
}{BLANK}*

PRAGMAPARALLEL {BLANK}*{PRAGMA}{BLANK}*"--"{BLANK}*
{PARALLEL}(({BLANK}+{PARALLELDIRECTIV
ES}*"\n")|"\n")

PRAGMAPARALLELFOR {BLANK}*{PRAGMA}{BLANK}*"--"{BLANK}*
{PARALLELFOR} ((({BLANK}+
{PARALLELDIRECTIVES})*"\n")|"\n")

PRAGMAOMP ({PRAGMAPARALLEL}|
{PRAGMAPARALLELFOR})

Matched strings are then returned as tokens (numeric representations of

strings and simplified processing) and variable yytext points to found string
[8,9]. However, we must be conscious of some of lex’s limitations. Because it is
based on FSA (Finite State Automaton) it cannot be used, for example, to
recognize nested structures such as parentheses or OpenMP directives. In such
cases a stack must be incorporated to solve this problem. Whenever scanner
encounters starting pragma it is pushed on the stack. When ending pragma is
encountered it is matched with the top of the stack, and the stack is popped.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 15/02/2026 01:48:19

UM
CS

Professionally designed and developed OpenMP parser… 51

In most cases the answer to the second point is the use of syntax analyzer
(yacc - bison), which generates syntax tree according to tokens returned by lex.
Because we are not interested in all grammar rules of the Ada language, but only
OpenMP syntax, the use of this tool is pointless. All directives, clauses,
variables, etc. can be easily extracted using the “powerful” C function sscanf
and some simple string handling tricks [10]. Pragmas syntax is trivial, and is
automatically checked while matching to the above lexical rules.

While scanning, the file is divided into blocks. Three kinds of blocks are
needed to correctly interpret OpenMP directives: variables declarations, parallel
regions (code between pragma begin and end) and rest of program code. These
program parts are stored in one array, in order that they are encountered and
each of them has its identifying number. Directives and clauses are stored in
another structure. Each directive has a number of blocks it refers to, incorporated
with it. Such organisation of data makes interpretation rather a straightforward
process, although we can run into some problems occasionally.

Before we describe the process of interpreting OpenMP directives, let us
remind how parallelism in Ada is carried out [2,3,7]. In Ada, tasks are objects.
Each task has a unique type, which is specified in an object declaration or
allocator (an expression of the form "new ...") that causes the creation of the
task. Each task type is declared in two separate parts: a task specification and a
task body. The specification has a sequence of entry declarations, which define
the communications interface of tasks of that type. The body has the rest of the
description of the task type. Over time, tasks proceed through various states. A
task is initially inactive; upon activation, and prior to its termination it is either
blocked (as part of some task interaction) or ready to run. While ready, a task
competes for the available execution resources that it requires to run.

A task type can be regarded as a template from which actual tasks are created.
Task objects and types can be declared in any declarative part, including task
bodies themselves. For any task type, the specification and body must be
declared together in the same unit, with the body usually being placed at the end
of the declarative part.

In our case task type specification can be written as [7]:

task type Worker_Thread is
 entry Init(no : in natural);
 entry SetVals(...);
 entry RetVals(...);
end Worker_Thread;

and task body as:

task body Worker_Thread is
 --declaration of local variables

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 15/02/2026 01:48:19

UM
CS

Rafał Henryk Kartaszyński, Przemysław Stpiczyński 52

begin
 accept Init(no : in natural) do
 -- set task identifier
 end Init;

 accept SetVals(...) do
 -- init appropriate local variables
 end SetVals;

 -- execute parallel region operations

 accept RetVals(...) do
 -- return appropriate local variables (results)
 end RetVals;
end Worker_Thread;

In addition, task of this type must be organised into an array to ensure multi-
thread execution:

type TWorker_ThreadPtr is access Worker_Thread;
Worker_Thread_Array0 : array(1..ADAOMP_THREADS_COUNT) of
TWorker_ThreadPtr;
Worker_Thread_Index0 : integer := 1;

Now the only thing left is to call threads, which is done in the following
manner (for parallel directive):

-- allocate array elements
for Worker_Thread_Index0 in 1..ADAOMP_THREADS_COUNT loop
 Worker_Thread_Array0(Worker_Thread_Index0) := new Worker_Thread;
end loop;

-- init thread (give them distinct identifiers)
for Worker_Thread_Index0 in 1..ADAOMP_THREADS_COUNT loop
 Worker_Thread_Array0(Worker_Thread_Index0).Init(Worker_Thread_Index
0 - 1);
end loop;

-- set, if needed, local variables of the threads
for Worker_Thread_Index0 in 1..ADAOMP_THREADS_COUNT loop
 Worker_Thread_Array0(Worker_Thread_Index0).SetVals(...);
end loop;

-- get, if needed, local variables – results - from threads
for Worker_Thread_Index0 in 1..ADAOMP_THREADS_COUNT loop
 Worker_Thread_Array0(Worker_Thread_Index0).RetVals(...);
end loop;

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 15/02/2026 01:48:19

UM
CS

Professionally designed and developed OpenMP parser… 53

After presenting ideology of achieving parallelism in Ada, let us return to
parser analysis. The interpretation process can be shortly described as follows:

for each OpenMP directive do
begin

Locate declaration block (DB) corresponding to the program block OpenMP
directive is in;

Add specification of appropriate task type to DB;
Add declaration of appropriate task body to DB and move blocks (PB),

current directive is referring to, to declarative part of task body (between
SetVals and RetVals entries);

Add declaration of array of task pointers to DB;
Insert threads call section into place PB was located;

end;

This ends Ada OpenMP file parsing. The only thing left to do is to write the
result to the appropriate file and compile it with gnatmake to check for errors.

When called AdaOMP compiles given Ada program file (.adb) with
gnatmake. If there are no errors, the file is parsed by OpenMP compiler and the
results overwrite a given file (however, the old file is written under a different
name – „.tmp” suffix is added to the file name). The last step is running
gnatmake again to check if parsing was correct. AdaOMP calling conversion is
as follows:

 adaomp [argument] [ada_file] [arguments_for_gnatmake]

where argument is one of:
-o – [ada_file] is not altered and the results are written on the standard output
-h – displays help.

4. Results

As an example of using Ada OpenMP parser, let us discuss the Ada version
of an OpenMP parallel program for solving the Helholtz equation [11]. The
example will also show how nested directives are interpreted. The following
fragment of the sequential program includes OpenMP pragmas (some obvious
code fragments are replaced with “...”):

--
-- Solves poisson equation on rectangular grid assuming :
-- (1) Uniform discretization in each direction, and
-- (2) Dirichlet boundary conditions
--
-- Jacobi method is used
--

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 15/02/2026 01:48:19

UM
CS

Rafał Henryk Kartaszyński, Przemysław Stpiczyński 54

-- Input : n,m Number of grid points in the X/Y directions
-- dx,dy Grid spacing in the X/Y directions
-- alpha Helmholtz eqn. coefficient
-- omega Relaxation factor
-- f(n,m) Right hand side function
-- u(n,m) Dependent variable/Solution
-- tol Tolerance for iterative solver
-- maxit Maximum number of iterations
--
-- Output : u(n,m) - Solution
--
...
k := 1;
 while (k <= maxit) and (error > tol) loop
 error := 0.0;
 -- Copy new solution into old
 pragma omp; -- parallel private(i)
 pragma omp; -- parallel for private(k)
 for j in 1..m loop
 for i in 1..n loop

 uold(i,j) := u(i,j);
 error := error;

 end loop;
 end loop;
 pragma omp; -- end
 -- Compute stencil, residual, & update
 pragma omp; -- parallel for private(resid) reduction(+ : error)
 for j in 2..m - 1 loop
 for i in 2..n - 1 loop

 -- Evaluate residual
 resid := (ax * (uold(i - 1, j) + uold(i + 1, j))
 + ay*(uold(i, j - 1) + uold(i, j + 1))
 + b * uold(i, j) - f(i, j)) / b;
 -- Update solution
 u(i,j) := uold(i,j) - omega * resid;
 -- Accumulate residual error
 error := error + resid * resid;

 end loop;
 end loop;
 pragma omp; -- end
 pragma omp; -- end
 k := k + 1;
 error := sqrt(error) / float(n * m);

M
ai

n
re

gi
on

R
eg

io
n

I
R

eg
io

n
II

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 15/02/2026 01:48:19

UM
CS

Professionally designed and developed OpenMP parser… 55

end loop; -- End iteration loop
...

After parsing the above code with AdaOMP we will get its parallel version:

...
task type Worker_Thread is -- Computations of Main Region
 entry Init(no : in natural);
 entry SetVals(iLocal : in integer);
 entry RetVals(iLocal : out integer);
end Worker_Thread;
task body Worker_Thread is
 ... -- local variables declaration

 -- Computations of Region I
 task type Worker_Thread1 is
 entry Init(...);
 entry SetVals(...);
 entry RetVals(...);
 end Worker_Thread1;
 task body Worker_Thread1 is
 ... -- local variables declaration
 begin
 accept Init(...) do ...
 accept SetVals(...) do ...
 ... -- execute operations from Region I
 accept RetVals(...) do ...
 end Worker_Thread1;
 ... -- Worker_Thread1 array and local variables declaration

 -- Computations of Region II
 task type Worker_Thread2 is
 entry Init(...);
 entry SetVals(...);
 entry RetVals(...);
 end Worker_Thread2;
 task body Worker_Thread2 is
 ... -- local variables declaration
 begin
 accept Init(no : in natural) do ...
 accept SetVals(...) do ...
 ... -- execute operations from Region II
 accept RetVals(...) do ...

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 15/02/2026 01:48:19

UM
CS

Rafał Henryk Kartaszyński, Przemysław Stpiczyński 56

 end Worker_Thread2;
 ... -- Worker_Thread2 array and local variables declaration

begin -- Worker_Thread
 accept Init(...) do ...
 accept SetVals(...) do ...
 ... -- create, init, lunch and get results from parallel processes:
 ... -- Worker_Thread1 and Worker_Thread2 executing operations
 ... -- from Region I and Region II respectively
 accept RetVals(...) do ...
end Worker_Thread;
... -- Worker_Thread array and local variables declaration

... -- Main program
k := 1;
while (k <= maxit) and (error > tol) loop
 error := 0.0;
 ... -- create, init, lunch and get results from parallel process
 ... -- Worker_Thread executing operations from Main Region
 k := k + 1;
 error := sqrt(error)/float(n*m);
end loop; -- End iteration loop
...

Execution of both programs will produce the same results. In the second case,
multiple thread will be used to execute the parallel region code. Writing such a
parallel program in Ada [12] would be time consuming and difficult, whereas
the use of OpenMP simplifies this process. In addition, we do not need to rewrite
our old programs to execute them in parallel, we simply put OpenMP pragmas in
appropriate places in the source code and OpenMP parser makes all necessary
transformations.

5. Future work

Due to the fact that the recognized directives and clauses as well as library
functions provide means to face most of programmers’ expectations we want to
postpone adding new directives and clauses. Instead we would like to focus our
attention on standardizing approach to parallel and distributed programming
with Ada [6,13].

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 15/02/2026 01:48:19

UM
CS

Professionally designed and developed OpenMP parser… 57

References
[1] Chandra R., Dagum L., Kohr D., Maydan D., McDonald J., Menon R., Parallel Programming

in OpenMP, Morgan Kaufmann Publishers, San Francisco, (2001).
[2] Kok J., Parallel programming with Ada, Int. J. of Supercomp. Applic., 2 (1988) 100.
[3] Ada 95 Reference Manual, Intermetrics, (1995).
[4] Aho A.V., Sethi R., Ulman J.D. Kompilatory. Reguły, metody i narzędzia, WNT, (2002), in

Polish.
[5] Paprzycki M., Zalewski J., Parallel computing in Ada: An overview and critique, Ada Letters,

17 (1997) 62.
[6] Stpiczyński, P., Ada as a language for programming clusters of SMPs, Annales UMCS

Informatica, 1 (2003) 73.
[7] Kartaszyński R., Stpiczyński P., OpenMP parser for Ada, Annales UMCS Informatica, 2

(2004) 125.
[8] Niemann T., A Compact Guide to Lex & Yacc, epaperpress.com
[9] Lex online manual: http://dinosaur.compilertools.net/lex/index.html
[10] Kernighan B.W., Ritchie D.M., The C Programming Language” Second Edition.
[11] http://www.openmp.org/drupal/samples/jacobi.html
[12] Huzar Z., Fryźlewicz Z., Dubielewicz I., Hnatkowska B., Waniczek J., Ada 95, Helion,

(1998), in Polish.
[13] Paprzycki M., Zalewski J., Ada in distributed systems: An overview, Ada Letters, 17(1997)

55.

Pobrane z czasopisma Annales AI- Informatica http://ai.annales.umcs.pl
Data: 15/02/2026 01:48:19

UM
CS

Pow
er

ed
 b

y T
CPDF (w

ww.tc
pd

f.o
rg

)

http://www.tcpdf.org

