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Abstract
The shortest path problem is solved and applied to the calculations of half lives with respect to
spontaneous fission of heavy nuclei. The dynamical programming method of Bellman and Kalaba
is used to find the fission path in the d-dimensional space of deformation parameters. Fission half
lives of heavy isotopes (100<Z<110) are shown and compared to the experimental data.

1. Introductory remarks

A half life of anucleus *X, with respect to the spontaneous fission into two
nearly equal fragmentsis inversely proportiona to the probability of fission and

reads [1]
. ~1
g 1
where
P:(1+exp(2s)’1) , )

is the probability of fission decay, n is a frequency of fission mode equal to
10°¥sec™, Sis the functional of path X in the d-dimensional space of nuclear
deformations { X} and is given in units of Plank constant h=2p. The path X joins
two specia points of the deformation space: one corresponding to the ground
state of the nucleus (a) and the other one to the elongated nuclear shape or
"two nuclear fragments” (b). The functional Sisgiven by

s[] = é)1/2|V(x) ~E[B(9)ds, 3)

where V(s) is a potential energy of the nucleus, E its actual energy and

B() =& B, (VkX.. (4)
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The dot over the symbol means the derivative %(s) =dx/ds, and sise.g. thearc

length of the curve x. The shortest half life T (or the largest tunneling probability

P :1/T) corresponds to the smallest value of the action S. The problem of
finding the half life is thus equivalent to the minimization problem of the action
integral §X] in Eq. (3) where x isthe path searched for.

In practice one has values of V(x) and By(X) in discrete points of x which can
be arbitrarily dense in the sense of S. If the mesh has dimensions{ny, ny, ... , ng}
then the number of possible paths which have to be searched for is
approximately given by (see Fig. 1)

(nnn,..n,)". ®)

a b X
Fig. 1. Spontaneous fission of atomic nucleus X into two fragments A and B

Even in the smplest case of 2-dimensional space (a surface) consisting of
e.g., 10" 20 grid points thisis a tremendously large number. On the first sight the
problem can not be solved!

However, if one applies the dynamical programming, the solution of the
problem is easy [2]. The method has been applied for the first time in a series of
papers on the nuclear fission [1] at the end of 70-s and allowed to determine the
half lives of the heaviest and superheavy nuclel.

The presented paper describes the agorithm of finding the shortest path
which minimizes the action integral §x] given in Eq. (3).

1
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Fig. 2. The shortest path searched by dynamic programming method. The grid points represent the
mesh in a 2-dimensional space {x} in which the functional Sgxy of Eq. (3) is defined.

The thick polygonal line represents the shortest path starting from the point (i,j)
and ending at the fina point (b)
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2. The method of dynamical programming

Assumption: The path joining the two points which are “very close’ in the the
sense of Sisthe straight line. In this case any path on the mesh is the polygonal
line.

Figure 1 shows the two dimensional mesh of grid pointsin {x}. Consider the
action S(i,j;b) corresponding to the minimal path from (i,j) to (b) and the action
S(i-1,k;i,j) calculated between the two neighbour points (i-1,k) and (i,j) (here i
denotes a column and j, k the rows of aregular grid). Adding them together and
minimizing over all the rows k one obtains the action

S(i- L j;b) =min[S(i - 1))+ (i, j;K)], ©)
which is the minimal action on the polygonal path joining (i-1,j)) and (b).
Repeating this procedure for all columns and al points in a given column one
ends with the actions §1,k) for k=1, 2, ..., m. Now, the last step is to caculate
the minimum of the expression
S(a,k) +S(Lk;b), (7)
with respect to k. If this is done one ends with the shortest path joining (a) and
(b). It isredly simple!
What was done, can be summarized in the following formula:
S(a,b) = min[S(a,L k) +min[S(Lk;2k;) +...

min[S(n- 1k,) + S(nL k,;b)]]].
In this way the problem of complexity O(n™) is reduced to the problem of

(8)

complexity O (n" m). In addition, no part of caculations was repeated. In the

case of many dimensional space, the algorithmisreally very effective.

The calculations of the half lives by using this method are very common now.
The method may be also applied in other branches of science where the
minimization of functionalsin complex situations is needed.

The convergence of the method presented here was tested by increasing the
number of grid points and/or by comparison the path to the shortrest path
obtained by application of the Ritz method in which one assumes the shape of

the path in the form eg., Xzé_ kakf(al,az,...,aN), where f(a) are properly
chosen functions and one looks for the minimum of the function Say,ay,...,an).
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Fig. 3. Spontaneous fission half-lives (Tg) (in years) for the even-even isotopes of atomic nuclei
with 100£Z£110) plotted as afunction of the neutron number N. The different data are displayed
for four physical models of the nuclear energy
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3. Half life examples

Figure 1 shows an example of spontaneous fission half lives of heavy nuclei
with the atomic number 100£Z£110 calculated by the dynamical programming
method [3] in d=3 dimensiona space of shape parameters. Tthe experimental
data are used for comparison. To calculate the potentia energy V(xX) we have
used the Woods-Saxon potential with the optimal set of parameters. The mass
parameters B;; were calculated in the framework of cranking model.

The results are obtained using four different models for the nuclear energy.
The data obtained in the liquid drop model (Drop) [4] are presented by full
triangles and the results obtained with the droplet model [5] (Droplet) by
squares. The estimates made with the LSD [6] (Drop-LSD) are marked by open
triangles. It is seen that the spontaneous fission half-lives differ considerably
depending on the model used. For the liquid drop and the folded Y ukawa model
[7] (Fold.-Yuk.) the results are too large as compared to experiment, while these
for the droplet and the LSD models are closer to the measured T values.

For a long time this kind of programming has served as a good recipe which
alows to predict the haf lives of heavy or superheavy nuclei artificialy
produced in a few nuclear laboratories in the World, namely in the Lawrence
Berkeley National Laboratory, Berkeley, US, the Joint Ingtitute of Nuclear
Research (JINR), Dubna, Russia and Gesselschaft fir Schwerionen, Darmstadt,
Germany.

4. Summary

The effective method of dynamical programing is described. It leads to avery
effective algorithm of minimization of the functionals defined on the mesh in
many dimensional space.

The method of dynamical programming is very cheap and easy to apply.

As an example of application of the method we show the results of calculations
of spontaneous fission half lives of the heaviest nuclei Z3 100.
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