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ABSTRACT

A cycle of four methylation and four demethylation reactions with repression or
allosteric inhibition of enzymes is considered. The corresponding dynamical system is
characterised by two parameters: the sum of reagent concentrations (C) and the ratio of
rate constants of forward and backward reactions (k). In a symmetrical case (k=1) the
system has a unique equilibrium. At C>4 the equilibrium is unstable and the system has
oscillatory solutions. At k essentially different from 1, the system becomes excitable or
behaves as a bistable trigger.
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INTRODUCTION

Bacteria Rhodococcus erythropolis can utilise veratric acid as a carbon
source [1, 2, 3]. First, veratric acid undergoes two demethylations to
protocatechuic acid, which can be decarboxylated to katechol. The two latter
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substances can enter dearomatization pathways. At the certain choice of
veratric acid concentration and cell density, oscillations of methoxyphenolic
compounds can be observed in bacterial culture [3, 4]. In order to explain
observed oscillations we have proposed a kinetic model of a cycle of four
methylation-demethylation reactions [5, 6]. As a dynamical system, this
model had some analogies to neurone oscillator proposed by Dunin-
Barkovsky [7]. The model was highly asymmetrical because of the two
following assumptions. 1.We treated veratric acid as a reservoir substance
and its concentrations as a parameter of the system. 2. The ratio of the rate
constants for methylation and demethylation reactions could be essentially
different from unity. It had one or three equilibrium points depending on
parameters values. When there was one equilibrium point, the system relaxed
to the stable equilibrium or oscillated around the unstable equilibrium. At
three equilibrium points the system behaved as a bistable trigger or as an
excitable system.

Most of these features are conserved also in a more symmetrical system. In
this paper I consider a model in which the only source of asymmetry are
essentially different rate constants of forward and backward reactions.
Consideration of this kind of model appeared to be necessary for an analysis of
synchronisation of the processes taking place in different bacterial cells in
a culture.

FORMULATION AND GENERAL PROPERTIES OF THE MODEL

The basic structure of the system (Fig. 1) is the same as that presented in
previous paper [5]. Veratric acid (Fig. 1b) added to the culture of bacteria
Rhodococcus erythropolis is demethylated two times to give protocatechuic
acid (Fig 1c). Conversions a«<>x and z<>y in Fig. la correspond to
demethylation-methylation reactions at the position 4. In a similar way,
conversions x<»y and a<>z correspond to the same reactions at the
position 3.
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FIG. 1. (a) The cycle of reactions. Expressions next to the arrows describe the rates of
respective reactions, a represents veratric acid (b), x and z isomers of vanilic acid and y
protocatechuic acid (c).

At the arrows in Fig. la there are given expressions relating the rates of
corresponding reactions to the concentrations of reagents. These relations are
based on the following assumptions:

1. Veratric acid (a) acts as a corepressor of the 3-O-demethylase.

2. Vanilic acid (x) acts as a corepressor of the 4-methylase.

3. Protocatechuic acid (y) acts as a corepressor of the 3-methylase.

4. Isovanilic acid acts as a corepressor of the 4-O-demethylase.

Following other authors [8-13], we use the expression 1/(1+r") with m=2 to
describe the influence of the corepressor concentration on the concentration of
the corresponding enzyme. More detailed discussion of this question have been
presented earlier [5]. Kinetic relations shown in Fig. la can alternatively
describe allosteric inhibition of enzymes instead of their repression. The scheme
in Fig.1a can be also related to reversible substitution reactions in two different
positions in some other molecules, not necessary in veratric acid.

Under these assumptions, the evolution of the system can be described by

the following set of ordinary differential equations:

— + —
dt 1+d 1+x 1+)y* 1+ €]

da -a kx kz a
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Equations (1-4) describe the same set of reactions as that analysed earlier
[5]. This time, however, we treat veratric acid concentration (a) as a dynamical
variable and not as a constant parameter. The dynamical system (1-4) is
positively invariant and satisfies the microequilibrium postulate. Proofs of the
both properties given in the earlier paper [S] remain valid. It follows from
equations (1-4) that

d
E(Hﬁyﬂ)zo' (5)
So, there is an integral of motion

a+x+y+z=C=const. (6)

It means that the sum of concentrations of all reagents is conserved. In fact,
the system could be treated as the system of the order three. One dynamical
variable could be eliminated using the conservation law (6). However, highly
symmetrical shape of the equations (1-4) is more convenient for calculation than
the corresponding system of the third order. The system (1-4) has one useful
property. The substitution:

a—y, x—z, y—a, z—x, k—1/k @)

into equations (1-4) and rescaling the time according to the relation:

t'=— 8
. ®)
results in the set of equations which is identical with the starting one. So, at the
same value of C, the systems with relative rate constants k& and //k have the same
number of equilibrium points with the same stability properties. Even more, the

following relations between solutions of both systems take place:
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a()=y:(t/k), xi()=z:(t/k), yi(t)=ax(t/k), z1(t)=x:(t/k), )

where subindex 1 and 2 refer to solutions with relative rate constants k& and 1/k
respectively. Of course, relations (9) will be valid if initial conditions satisfy
relations (7). Evolution of the system depends on the values of parameter & and
integral of motion C. In Fig. 2 there are shown two areas A and B, marked with
double horizontal lines, where the system has three equilibrium points. In the area
A there are two stable equilibrium points separated by the third unstable
equilibrium (saddle point). At k£ and C belonging to this area, the system behaves
as a bistable trigger. In the area B the system has the following equilibrium points:
stable node, saddle-point and unstable focus. At values k and C from the area B,
the system behaves as an excitable system.
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FIG. 2. Parameter plane of the system. The system has two stable and one unstable
equilibrium points in the area A, one stable and two unstable equilibrium points or three
unstable equilibrium points in the area B. Beyond the areas A and B the system has one
equilibrium. Curve p separates areas with one stable equilibrium point from that with no
stable equilibrium point. Curve q separates the area B with three equilibrium points from
that with single equilibrium. The curves are based on numerically calculated equilibrium
points using “Mathematica” with machine precision (16 digits) and printing of six
significant decimal digits. For more details see text.
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An exemplary phase portrait of this kind is shown in Fig. 6. There is a very narrow
part of the area B at its right-hand edge, where all three equilibrium points are
unstable. In this case, the autooscillations appear in the system. Beyond the areas
A and B the system has one equilibrium point. The single equilibrium is stable for
values of C smaller than those falling in the curve p in Fig. 2, and is unstable for
the higher values of C. All the mentioned areas, shown for £>1 in Fig. 2, appear
also at k<1. Corresponding curves dividing the parameter plane at A<l are
symmetrical on the logarithmic scale of & to those shown in Fig. 2 in respect to the
straight line k=1. The borders of the areas shown in Fig. 2. have been determined
numerically with the precision of six significant decimal digits.

EVOLUTION OF THE SYSTEM

AUTOOSCILLATIONS

Autooscillations appear in the system at the values of C higher than those
corresponding to the curve p in Fig. 2. Inside the area B the curve p goes slightly
above the curve g. So, there is a narrow strip of the area B between p and ¢
where the system has three unstable equilibrium points. For parameter values
belonging to this strip, the system has oscillatory solutions with all three
equilibrium points placed inside the corresponding limit cycle.

Analytical linear analysis of stability is possible only in the fully
symmetrical case with k=1. In this case the system has an unique equilibrium

a=x= —z—E 10
y i (10)

Eigenvalues of the system in the vicinity of the equilibrium point (10) are
given by the expressions (11):

2_
a,=32|-S18 Lpe
(16+C*)

4= (11)

’ o1+ a’

The fourth eigenvalue is equal to zero. Respective normal variables can be
defined by the transformation (12). Because of the conservation law (6) the
variable &, has a constant value C/2, and the evolution of the system can be

represented in a 3-dimensional space (§1 &0, EL).
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Numerical solutions a(?) at k=1 and C=5 or 50 are shown in Fig. 3. Solutions
X(t), y(t) and z(t) have the same shape as a(?) but are delayed in respect to a(?) by
one, two and three quarters of the period respectively. The period of oscillations
increases with growing values of C (see Fig. 4).

At values of k essentially different from the unity, the shapes of oscillations
of variables a, x, y and z became different from each other. As an example,
solutions a(?), x(t), y(t) and z(t) at k=40 and initial conditions a(0)=80,
x(0)=y(0)=z(0)=0 are shown in Fig. 5. According to the substitution (9),
solutions for £=1/40=0.025 and initial conditions y(0)=80, a(0)=x(0)=z(0)=0 can
be obtained from Fig. 5. It is enough to change the time scale by substitution
2000 instead of 50 for the highest value of time and read Fig. 5a as y(z), 5b as
z(t), 5c as a(t) and 5d as x(?). Dependence of the oscillation period on the sum of
reagent concentrations for a few values of & is shown in Fig. 4. The curves
presented in Fig. 4 were obtained on the basis of numerical solutions of
equations (1-4). Let us note that at high values of k the period of oscillations
remains almost constant in a quite wide range of C. For example, at £=20 the
period changes its value from 9.60 at C=40 to 10.16 at C=100. So, at such values
of k the system can work as a pacemaker for some rhythms.

EVOLUTION OF THE SYSTEM
AT MULTIPLE EQUILIBRIUM POINTS

At sufficiently high values of & the system can have three equilibrium points
(areas A and B in Fig. 2). In the area A, at £>8.2068, two of these equilibrium
points are stable and the third one is unstable. Let us consider, as an example,
the system with £=40. At this value of £, the area A includes the range of C
from 12.4932 to 21.0277. The values of the variables in equilibrium and
corresponding eigenvalues for /=40 and C=16.6 are given in Table 1. The
dynamical variables in the unstable equilibrium (point 2 in Table 1) have
intermediate values in respect to those describing the two stable equilibrium
points. Thus, in the state space of the system, the unstable equilibrium point is
situated somewhere between the stable equilibrium points. Depending on initial
conditions, the system goes to the equilibrium 1 with relatively low value of x
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or to the equilibrium 3 with a high value of x. The equilibrium points 2 and 3
become closer and closer to each other when the value of C decreases from 16.6
to 12.5. At the same time the domain of attraction of the equilibrium 1 is
growing. Eventually, at C=12.4932, the equilibrium points 2 and 3 annihilate.
In contrast, increasing value of C from 16.6 to 21 brings the equilibrium points
1 and 2 closer and closer to each other. These equilibrium points annihilate at
C=21.0277. 1 did not explore in detail the hypersurface separating attraction
domains of the equilibrium points 1 and 3. Nevertheless, it is intuitively clear
that the attraction domain of the equilibrium with a low value of x (point 1 in
Table 1) is bigger at the left-hand edge of the area A (Fig. 2) than at the right-
hand edge of this area. In the whole area A in all of the three equilibrium
points, the values of y and z constitute only a minute part of the pool of all
reagents (C). Fully analogical discussion can be applied to the area with
k<1/8.2068=0.0840336 with respective changes in the roles of variables and
scale of time, according to the substitutions (7) and (8). There is another area
(B in Fig. 2) with three equilibrium points. This area appears at £>11.9 or at
k<1/11.9=0.0840336.
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FIG. 3. Oscillations in a fully symmetrical system. Numerical solutions a(?) at &=1 and
C=5 (a) or C=50 (b).
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FIG. 4. Dependence of the period of oscillations on the sum of reagent concentrations
(C). Values of the relative rate constant k are shown at the respective curves. Periods
were obtained from numerical solutions of equations (1-4), using “Mathematica”.

Let us return to the example with &=40. For this value of k and C belonging to the
interval (21.0277, 34.1035), the system has a single stable equilibrium
characterised by three real and negative eigenvalues. As soon as C exceeds the
value of 34.1035, two additional equilibrium points appear. Both of them are
unstable. The system has three equilibrium points for 34.1035<(C<42.0551. Table
2 presents an example of such three equilibria for C=38. As can be seen from
Table 2, the saddle-point (2) is located between the stable node (1) and unstable
focus (3). In any case, the evolution of the system leads to equilibrium 1.
However, orbits attaining equilibrium 1 can be essentially different for different
initial conditions. In Fig. 6, there are shown projections of the two orbits on the
plane (a,x) for the values of ~=40 and C=38 as those used in Table 2. In the case of
the orbit starting from the point A (initial conditions {a(0), x(0), y(0), z(0)} =
{1.134, 35.4, 1.408, 0.058}) changes in the values of the variables are very small.
The system relaxes to equilibrium 1 almost monotonously. In contrast, on the orbit
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starting from point B ({a(0), x(0), y(0), z(0)}={1.66, 30.63, 5.33, 0.38}) the
amplitudes of changes of the variables are much higher. Before attaining
equilibrium 1, the orbit goes around the unstable equilibrium 3. So, we have to do
with an excitable system. Excitation events are somewhat different from those
described earlier [S]. Generation of positive spikes of all variables in the present
system is impossible because of the conservation law (6). After start from the
point B, one can observe diminishing value of x, which reaches its minimum of
21.74 at time 3.6. In expense of x, spikes of the remaining variables are generated.
The maximum values appear in the following sequence: »(2.97)=12.35,
z(4.31)=1.72 and a(5.61)=4.92. Even minimum value of x is essentially higher
than maximum values of y, z and a.
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FIG. S. Oscillations in a highly asymmetrical system. Numerical solutions at £~=40 and
C=80.
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TABLE 1. Coordinates (a,x,y,z) and respective eigenvalues (1) of the equilibrium points
at k=40 and C=16.6

Equilibrium no. 1 2 3

a 16.0935 14.1969 29172

x 0.504903 2.40104 13.6393

y 4.85482x107 2.96349x10™* 3.59011x107
z 1.54745x107 1.75225x10° 7.67861x107
A -72.8782 -46.9177 -41.2675

A -39.996 -39.9947 -39.7528

13 -19.9246 3.16435 -0.798068

TABLE 2. Coordinates (a,x,y,z) and respective eigenvalues (A) of the equilibrium points

at k=40 and C=38

Equilibrium no. | 1

a 1.09956 1.16751 2.16193

X 36.3598 34.4423 26.8251

y 0.524838 2.31183 8.34074

z 0.0158716 0.0783655 0.67221

A -32.844 -7.75538 -1.48735

A -17.7117 -0.731001 0.230103+0.829406i
A3 -1.02994 4.1651 0.230103-0.829406i

The variable x constitutes also a dominating fraction of the whole reagent
pool in all equilibrium points (see Table 2). So, in the excitable regime (arca B
in Fig. 2), the variable x behaves like a reservoir substance. Coordinates of the
saddle-point 2 determine the excitation threshold. The value of C=38 used in
Table 2 and Fig. 6 corresponds to the middle of the area B in Fig. 2 at &=40. At
the left-hand edge of this area, at C slightly higher than 34.1035, the saddle-
point 2 and unstable focus 3 are very close each to other and both are remote
from stable node 1. In such a situation the excitation threshold is relatively high
and amplitudes of generated spikes of the variables are relatively low. With the
growing value of C equilibrium points 1 and 2 come closer and closer to each
other. The excitation threshold becomes lower and lower. At C=42.0548, still
inside the area B in Fig. 2, destabilisation of the equilibrium 1 takes place. So, in
the interval 42.0548<(C<42.0551 the system has three unstable equilibrium
points and oscillative solutions. At C=42.0551 the equilibrium points 1 and 2
annihilate. Again, analogical discussion can be applied to k=1/40=0.025 with
substitution (7). All processes will then be 40 times slower according to time
rescaling (8).
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FIG. 6. Excitable system. Projections of the two orbits on the plane (a,x) at &~40 and
(C=38. Coordinates of stable node (1), saddle-point (2) and unstable focus (3) are given
in Table 2. Orbit starting from the point A (1.134, 35.4, 1.408, 0.058) corresponds to
subthreshold relaxation. Orbit starting from the point B (1.66, 30.63, 5.33, 0.38)
corresponds to excitation. Orbits obtained from numerical solutions of the equations
(1-4) using “Mathematica”.

CONCLUSIONS

The dynamical system (1-4) shares many modes of evolution with one
analysed earlier [5]. Providing a proper choice of parameter values, both systems
can relax to an unique stable equilibrium or behave as bistable triggers. Both
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systems can have autooscillatory solutions and can behave as excitable systems.
But in contrast to the earlier presented system with one reservoir substance, the
system (1-4) can not behave as a transducer of stimulus strength to frequency.
Both systems can describe metabolic oscillations in a single bacterial cell. Such
oscillations will appear in a bacterial culture if oscillations in different cells are
synchronous. | suppose that both considered systems will be useful in searching
favourable conditions for synchronisation.
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