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ABSTRACT

A three-dimensional quantum vacuum condensate is introduced as a funda-
mental medium from which gravity emerges in a geometro-hydrodynamic lim-
it. In this approach, the curvature of space-time characteristic of general rela-
tivity is obtained as a mathematical value of a more fundamental actual varia-
ble energy density of quantum vacuum which has a concrete physical meaning.
The fluctuations of the quantum vacuum energy density suggest an interesting
solution for the dark energy problem.
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1. INTRODUCTION

The 20™ century theoretical physics brought the idea of a unified quantum
vacuum as a fundamental medium subtending the observable forms of matter,
energy and space-time. The notion of an “empty” space devoid of any physical
properties has been replaced with that of a quantum vacuum state, defined to be
the ground (lowest energy density) state of a collection of quantum fields.
A peculiar and truly quantum mechanical feature of the quantum fields of the
vacuum is that they exhibit zero-point fluctuations everywhere in space, even in
regions which are devoid of matter and radiation. These zero-point fluctuations
of the quantum fields, as well as other “vacuum phenomena” of quantum field
theory, give rise to an enormous vacuum energy density.

The existence of a physical vacuum can be considered as the most important
consequence of contemporary quantum field theories, such as the quantum elec-
trodynamics, the Weinberg-Salam-Glashow theory of electroweak interactions
and the quantum chromodynamics of strong interactions. These quantum field
theories imply that various contributions to the vacuum energy density exist: the
fluctuations characterizing the zero-point field, the fluctuations characterizing
the quantum chromodynamic level of subnuclear physics, the fluctuations linked
with the Higgs field, as well as perhaps other contributions from possible exist-
ing sources outside the Standard Model (for instance, Grand Unified Theories,
string theories, etc.). On the other hand, there is no structure within the Standard
Model which suggests no relations between the different contributions to the
quantum vacuum energy density, and it is therefore customary to assume that the
total vacuum energy density is, at least, as large as any of these individual con-
tributions. As regards the role of the different contributions to the vacuum ener-
gy density, the reader can find a detailed analysis, for example, in the paper [1]
by Rugh and Zinkernagel, who studied the connection between the vacuum con-
cept in quantum field theory and the conceptual origin of the cosmological con-
stant problem, and in the paper [2] by Timashev, who examined the possibility
of considering the physical vacuum as a unified system governing the processes
taking place in microphysics and macrophysics, which manifests itself on all
space-time scales, from subnuclear to cosmological.

The realistic concept of the vacuum can be considered as the ultimate visit-
ing card which completes and complements Einstein’s theory of relativ-
ity. Relativity theory views space-time as a relative and dynamic manifold, in-
teracting with matter and energy. It is the “background” against which the events
of the manifest world unfold. But the origins of this background are not ac-
counted for in relativity theory: space-time is simply “given” together with mat-
ter and energy. In general relativity, the standard interpretation of phenomena in
gravitational fields is in terms of a fundamentally curved space-time. However,
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this approach leads to well-known problems if one aims to find an unifying pic-
ture which takes into account some basic aspects of the quantum theory. In order
to escape this situation of impasse, several authors advocated thus alternative
ways in order to treat gravitational interaction, in which the space-time manifold
can be considered as an emergence of the deepest processes situated at the fun-
damental level of quantum gravity. In this regard, the germinal proposal of
Sacharov was of deducing gravitation as a “metric elasticity” of space, which
consists in a generalized force opposing the curving of space [3] (the reader can
also see the reference [4] for a review of this concept). Sacharov’s model starts
from the interpretation of the action of space-time as the effect of quantum fluc-
tuations of the vacuum in a curved space. Other interesting approaches are
Haisch’s and Rueda’s model [5], regarding the interpretation of inertial mass and
gravitational mass as effects of an electromagnetic quantum vacuum, Puthoff’s
polarizable vacuum model of gravitation [6] and, more recently, a model devel-
oped by Consoli based on ultra-weak excitations in a condensed manifold in
order to describe gravitation and Higgs mechanism [7-9]. Under the construction
of all of these models there is probably one underlying fundamental observation:
as light in Euclid space deviates from a straight line in a medium with variable
density, an “effective” curvature might originate, under opportune conditions,
from the same physical flat-space vacuum.

In this paper, by following the philosophy that is at the basis of these ap-
proaches, we suggest a model of a three-dimensional (3D) quantum vacuum in
which general relativity emerges as the hydrodynamic limit of some underlying
theory of a more fundamental microscopic structure of space-time. According to
this model, the curvature of space-time characteristic of general relativity can be
considered as a mathematical value of a more fundamental actual energy density
of quantum vacuum which has a concrete physical meaning. In the outer interga-
lactic space, namely in the absence of material objects, the energy density of the
3D quantum vacuum is defined by the following relation:

S ()

P

where m, is Planck’s mass, c is the light speed and / is Planck’s length. The

quantity (1) is the maximum value of the quantum vacuum energy density and
physically corresponds to the total average volumetric energy density, owed to
all the frequency modes possible within the visible size of the universe, ex-
pressed by

14

C 113 3~ 97 3
Py = ey ~4,641266-10"J /m’ =10"Kg /m’, )




56 D. FISCALETTIL, A. SORLI

i being Planck’s reduced constant, G the universal gravitation constant. In the
outer intergalactic space curvature of space is zero and its energy density cor-
responds to the value (2). On the other hand, in the picture of Rueda’s and
Haisch’s interpretation of the inertial mass as an effect of the electromagnetic

quantum vacuum [5], the presence of a particle with a volume V, expels from

the vacuum energy within this volume exactly the same amount of energy as is
the particle’s internal energy (equivalent to its rest mass). On the basis of
Rueda’s and Haisch’s results, here we assume that each elementary particle is
associated with fluctuations of the quantum vacuum which determine a dimin-
ishing of the quantum vacuum energy density. Therefore, one can say that in
the presence of a material object the curvature of space increases and corre-
sponds physically to a more fundamental diminishing of the energy density of
the quantum vacuum, which, in the centre of the material object, is given by
relation
m-c’

P =P~ 7 (3)

m and V being the mass and volume of the object [10]. Here, we propose that
the quantum vacuum energy density is the fundamental, ultimate physical real-
ity characterizing the gravitational space. The physical property of mass is
considered as a secondary ontologically reality with respect to the energy den-
sity of quantum vacuum: the density of a given material object is produced by
a change of the quantum vacuum energy density on the basis of equation

Ap,.
p mat = zq > (4)
c

where Ap

we — P _pqu .

This paper is structured in the following manner. In chapter 2 we will ex-
plore in what sense general relativity can be seen as the hydrodynamic limit of
an underlying quantum vacuum condensate having quantized features. In chapter
3 we will show how the changes of the energy density of the 3D quantum vacu-
um give rise to the curvature of space-time characteristic of general relativity
and which is similar to the curvature produced by a “dark energy” density. Final-
ly, in chapter 4 we will analyse the motion of a material object in the curved
space determined by the changes and fluctuations of the quantum vacuum ener-
gy density.
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2. SPACE AS THE GEOMETRO-HYDRODYNAMIC LIMIT
OF A 3D QUANTUM VACUUM CONDENSATE
HAVING A DISCRETE NATURE

Taking account of Sacharov’s assumption that the action of spacetime

1
S(R)= @Idm/ gR, (5)
where R is the invariant Ricci tensor, is viewed as a change in the action of
quantum fluctuations of vacuum in a curved space and considering the con-
sistent histories approach of quantum mechanics [11-13], according to which
the quantum evolution can be seen as the coherent superposition of virtual
fine—grained histories, general relativity can be interpreted as the hydrodynam-
ic limit of an underlying theory of “microscopic” structure of space, more pre-
cisely of a 3D quantum vacuum condensate whose most universal physical
property is its energy density.

A fine-grained history can be defined by the value of a field ®(x) at the

_is[o

point x and has quantum amplitude W[®]=e I, where S is the classical ac-

tion corresponding to the considered history. The quantum interference between
two virtual histories A and B can be quantified by a “decoherence” functional:

DF [CDA,(DB] ~ \P[(DA ]I‘P[CDB]* I~ ei(s[%]’s[%]) (6)

that gives the coarse-grained histories corresponding to the observations in
classical world. The quantum amplitude for a coarse-grained history is then
defined by:

¥Y[w]=|D,0e’ 0[], ™)

where @ can be considered as a “filter” function that selects which fine-
grained histories are associated to the same superposition with their relative
phases. The decoherence functional for a couple of coarse-grained histories is
then:

D,[®, ®,]=[D,® D0, gD |o[®,] (8)

in which the histories @, and ®, assume the same value at a given time in-
stant of the future, where decoherence indicates that the different histories
contributing to the full quantum evolution can exist individually, are character-
ized by quantum amplitude and that the system undergoes an information and
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predictability degradation [13] (in this sense the system becomes stochastic
and dissipative). By applying the formalism (8) to hydrodynamics variables
[14], Einstein’s stress-energy tensor can be expressed through the following
operator:

T, (x,.x,)=T,®(x,)®(x,). )

uv

In equation (9) I',, is a generic field operator defined at two points that
leads to the “conservation law”:

T, =0 (10)

meaning that the decohered quantities, showing a classical behavior, are the
conserved ones. It can be shown that, for an action S[®']|=®'A ®", the fol-

lowing relation holds

D, [wa 75 ]: J'DFK;V (xA X )J'DF(I)refw’[MK:"'(nag ) (x4 )],,,,w”’eik/,”(m.xg Wi Ceaens) eia[r]f‘, (varen) 72 (xa0rs)] (1 1)

wvot v

in which we have used the integral representation of delta and the CTP indices
Imn=1,2, Q being the closed—time path two-particle irreducible action.

The conservation of ZA:, , implies that the decoherence functional has maxi-

mum values in correspondence of the hydrodynamic variables ( 0, p) that, in
turn, are the most readily decohered and have the highest probability to become

classical. By applying the above procedure to Einstein’s tensor Gﬂ an analogy

emerges between the conservation law for IAZ ., and the Bianchi identity G, =0

which implies the decoherence and the emergence of the hydrodynamics varia-
bles of the geometry. In this sense general relativity can be considered as
geometro—hydrodynamics and the most readily decohered variables are those
associated to the largest “inertia” representing the collective variables of geome-
try.

If general relativity must be regarded as a geometro-hydrodynamic limit of
an underlying “microscopic” background where one has collective variables, and
the laws governing macro-classical space-time are expressed in terms of collec-
tive variables, the precise characterization of this underlying background and
thus the quantization of the general-relativistic metric or the connection varia-
bles will only result in the discovery of the excitations in the geometry and not
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of its quantum micro-structures. If we consider the collective hydrodynamics
variables p and p appearing in the stress-energy tensor 7 , then the quantiza-
tion has sense when performed on the field function ®(x) from which they are

constructed and not on p and p themselves. The situation is similar to that

regarding condensed matter physics in which the quantization of collective exci-
tations leads to phonons and not to the atomic structure of matter. In the view of
general relativity as geometro-hydrodynamic limit of an underlying background,
there is therefore an important analogy between quantum to classical transition
of gravity and the behavior of condensed matter. Moreover, given the collective
variables (the metric and the connections in general relativity), how can we
characterize the microscopic structure of the underlying background, namely
what can we say about the quantum micro-structure from which the collective
variables derive? In this regard, a possible strategy is of starting from a suitable
theory of quantum microscopic structure and studying its previsions in the long
wavelength—low energy limit. An approach of this kind has been recently sug-
gested, for example, by Consoli [7-9], who has introduced a physical vacuum
intended as a superfluid medium — a Bose condensate of elementary spinless
quanta — whose long-range fluctuations, on a coarse-grained scale, resemble the
Newtonian potential, yielding the first approximation to the metric structure of
classical general relativity. In analogy with Consoli’s model, taking into consid-
eration the long-wavelength modes, here gravity is induced by the underlying
field @(x) which describes the density fluctuations of the vacuum. In weak

gravitational fields, on a coarse-grained scale, the underlying field CD(x) can be
identified with the Newtonian potential

M
©~U,=-G,Tr %, (12)
namely
gw’ = gﬂv [(D(x):l (13)

An interesting argument which allows us to characterize the quantum micro-
scopic structure of the underlying background generating gravity can be derived
from the quantum uncertainty principle [15] and from the hypotheses of space-
time discreteness at the Planck scale. In particular, in regard to the granularity of
space-time and its link with gravity, in the papers [16-19] Ng showed that the
quantum fluctuations of space-time manifest themselves in the form of uncer-
tainties in the geometry of space-time and thus the structure of the space-time
foam can be inferred from the accuracy with which we can measure its geome-
try. By considering a mapping of the geometry of space-time for a spherical
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volume of radius / over the amount of time 7 =2//c it takes light to cross the
volume, in Ng’s approach the average separation between neighbouring cells of
space corresponds to the average minimum uncertainty, and thus to the accuracy
in the measurement of a distance /, given by

sl= (27 /3) 11", (14)

An interesting aspect of Ng’s quantum foam model lies in its holographic
features in the sense that here, dropping the multiplicative factor of order 1,

a spatial region of size / can contain no more than /° /(ll}f) :([/lp)2 cells and
thus a maximum number of bits of information (//1, )2 in agreement with the

holographic principle [20-25] which implies that, although the world around us
appears to have three spatial dimensions, its contents can actually be encoded on
a two-dimensional surface, like a hologram.

By applying the discreteness hypothesis of Ng’s model, namely the fact that

we cannot make Ax smaller than the elementary length (14)":

Ax > (272_2 /3)”3 ll/sl;/s (15)

to Heisenberg’s uncertainty relation for the position Ax and momentum Ap

h
Axz——
2Ap (16)

one obtains that, if Ap increases, the expression of Ax as a function of Ap
must contain a term directly proportional to Ap that counterbalances the term
proportional to (Ap)’l. By following [26], a possible choice, at the first order
in Ap, is:

Av> v (272 13)" P 17

in which the factor in the second term of the right hand side is selected by
means of dimensional arguments. The expression (17) can be viewed as the
“generalized” version of the uncertainty principle in a discrete space-time.

' An analogous limitation holds in time.
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By a similar reasoning one can obtain the corresponding version of (17) for
time uncertainty as:

h AET?
AtZ—zAE-I- o 5 (18)

where AE is the energy uncertainty and 7, =l(27r2 /3)”3 ["I”" is the elemen-
c

tary time. In the approach proposed in this article, the new terms appearing in
equations (17) and (18) have a very special meaning: they represent the “in-
trinsic” uncertainty of space-time due to the presence of a particle of a given
energy—momentum deriving from opportune changes of the quantum vacuum
energy density Ap . =p,, —p,.. Thus, the presence of matter of density (4)

modifies the geometry of space-time. In fact, the energy E ~ pc contained in a

region of size L and deriving from matter of density (4) modifies the exten-
sion of this region of an amount:

1/3

(27°/3)" 1"I*T,E
> : (19)

On the basis of equation (19), the curvature of space-time can be related to
the presence of energy and momentum in it.

In other words, in the approach here suggested, one can say that the changes
of the quantum vacuum energy density associated with the presence of matter of
density (4) correspond to an underlying microscopic background geometry de-
fined by equation (19).

Moreover, taking into account that in Ng’s model the holographic space-time
foam defined by equation (14) can be related to the cosmic scale if the average
minimum uncertainty (14) corresponds to a maximum energy density

~

3

P= g(ﬂ,,)fz (20)

for a sphere of radius / that does not collapse into a black hole, namely

3 2
p=o(Ril) @1)
where R, is the Hubble radius (which is the critical cosmic energy density as

observed), hence derives that the terms in equations (17) and (18) representing
the “intrinsic” uncertainty of space-time due to the changes of the quantum
vacuum energy density can be themselves related to the cosmic scale. In par-
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ticular, by taking account of equation (21), equations (17) and (18) at the cos-
mological scale respectively become

h Ap 2/3 ,
Ax>——+ (277 /3) R 1",
2Ap 2h( )R (22)
ars I AEL (23)
2AE  2h

where AE is the energy uncertainty and 7, = l(27r2 / 3)1/3 R’ . Finally, equa-
c

tion (19) describing the link between the underlying microscopic structure of
space-time and the curvature of space-time, at the cosmological level may be
expressed as

(27°/3)"R,"I"T,E
2h ’

Now, after showing how the quantum microscopic structure of the underly-
ing background generating gravity can be characterized and the important link of
this microscopic structure with the cosmic scale, the next fundamental step is to
make explicit the role of the quantum vacuum energy densities given by equa-
tions (1) and (3) (in particular, in order to derive the critical cosmic energy den-
sity (21) as observed).

~

24)

3. THE CHANGES OF THE 3D QUANTUM VACUUM ENERGY
DENSITY AS THE ORIGIN OF THE CURVATURE OF SPACE-TIME

The Planck energy density (2) is usually considered as the origin of the dark
energy and thus of a cosmological constant, if the dark energy is supposed to be
owed to an interplay between quantum mechanics and gravity. However, the
observations are compatible with a dark energy

p,, 210°Kg/m’ (25)

and thus equations (2) and (25) give rise to the so-called “cosmological con-
stant problem” because the dark energy (25) is 123 orders of magnitude lower
than (2). In order to solve this problem, an interesting explanation for the actu-
al value (25) which invokes the fluctuations of the quantum vacuum has re-
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cently been suggested by Santos [27-29]. According to this approach, quantum
vacuum fluctuations determine a curvature of space-time and, under plausible
hypotheses within quantized gravity, a relation between the two-point correla-
tion function of the vacuum fluctuations and the space-time curvature was
obtained. The quantum vacuum fluctuations can be associated with a curvature
of space-time similar to the curvature produced by a “dark energy” density, on
the basis of the equation

P = 70G_|':C(s)sds (26)

which states that the possible value of the “dark energy” density is the product
of Newton constant, G, times the integral of the two-point correlation function
of the vacuum fluctuations defined by

C(|ﬁ—;§|)=%{vac|ﬁ(ﬁ,t)/3(72,t)+ﬁ(fz,f)ﬁ(fwf)|"ac>’ 27)

0 being an energy density operator such that its vacuum expectation is zero

while the vacuum expectation of the square of it is not zero. The correlation
function (27) determines also the gravitational energy associated with the vac-
uum fluctuations according to the equation

p ¢ =—47G[C(r,)rdr,. (28)
Moreover, dimensional analysis leads to Zeldovich’s formula [11],

, sz.l

(29)

€ = B
e e

(r. =h/mc being Compton’s radius) which involves a parameter, m, with di-

mensions of a mass. If in Zeldovich’s original model, equation (29) reproduces
the observed value of the dark energy density for a mass of m~7,6-10”Kg that

is about 1/20 times the proton mass or about 80 times the electron mass, San-
tos’ approach does not allow to derive the value of m, but inside his approach
it is plausible to assume that vacuum fluctuations of high energy, involving
very massive particles, would not be probable.

Here, our aim is to show that the curvature of space-time associated with
a dark energy density can be interpreted as a consequence of more fundamental
changes of the 3D quantum vacuum energy density Ap , =p, —p,,, in other

words it can be physically defined as the mathematical value of the 3D quantum
vacuum energy density (whose underlying microscopic structure is characterized
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by a geometry expressed by equations (17)-(19) and by equations (22-(24) at the
cosmological level). In this regard, before all, we assume that the expectation
value of the stress-energy tensor operator of the quantum fields (9) at any point
gives the matter energy associated with the matter (baryonic plus dark) energy
density, which is determined by changes and fluctuations of the 3D quantum
vacuum energy density, without any additional contribution to the vacuum. This
assumption allows us to obtain the correct Friedmann-Robertson-Walker metric

ds’ =—dt’ + [a(t)]z (dr2 + erQ) (30)

in which the recession of the distant galaxies can be calculated in terms of the
link of the measurable Hubble constant and of the deceleration parameter with
the time-dependent parameter a(7)), by introducing new time and radial coor-

dinates 7' and ¢' given by relations

r : " da(t') ' 31
" Lo, =1 o(r*).
r a(t')+0(r ), t=t 2a(t') P + (r )

By inserting (31) into (30) one obtains the equation

ds’ ={1+(£] I"'Z:|d}"'2+l’"2 aoy —[1+[£j r'z}dt'2 =
a a (32)

[1+—87;G(pm, +pDE)r'2}dr'2+r'2 doy {1—%(%/2%1 —pDEjr”}dt”,

where the Friedmann equations

al 8zG i 87zG(1 (33)
- = 5 + s T T T A 1t+ DE
[a} 3 (Pt P0e)s —=—3 (2/% p j
. . . . da(t')
have been taken into account in the second equality, a=a(t'), a= PR
t'
. d’a(1) . . . . .
a 57, p,., 1is the density of matter given by equation (4), p,, is the

density owed to a possible existence of dark matter. In reference to equation
(32), the assumption that the expectation value of the stress-energy tensor op-
erator of the quantum fields (9) gives the matter stress-energy density deter-
mined by fluctuations of the 3D quantum vacuum energy density, means that
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Ap,,

2

YT W) =
(|1 o) =~

(YT

T)zo for uv =00, (34)

¥ being the quantum state of the universe corresponding to the value of the
field CD(x) defining a given fine-grained history. This suggests to express the
stress-energy tensor (9) corresponding to the quantum vacuum fluctuations as

A
T
uv

Pt (9

Hv uv

)1, (35)

where / is the identity operator. The existence of quantum vacuum fluctua-
tions imply that, despite the expectation of IAZ " 1is zero by definition, one has

(¥|7 ()7 ()] #) %0 66)

Hv

in general.

Now, in order to derive equation (32), taking into account Santos’ results, in-
side our model it is reasonable to assume that the underlying quantum vacuum
condensate can be characterized by considering the metric of the quantum vacu-
um defined by relation

ds* =g, dx"dx’, (37)

where the coefficients (in polar coordinates) are

A

g00=—l+f;00, g =1+ﬁl], £, =r2(1+h22), eon =r2sin28(l+ﬁ33), gﬂv:ﬁw for g=#v (38)

where multiplication of every term times the unit operator is implicit and, at
the order O(r*), one has

<h1> =0 except <f;00> = %[AZ"”E + P, ]rz and
()= ?(pm —%%jrz , (39)

where <h: > stands for (‘P|hAW |¥) (and the fluctuations of the quantum vacuum

73

Ap,.=p,. — P, correspond to an underlying microscopic geometry defined
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by equations (17), (18) and (19)). In virtue of the quantized geometry defined
by equations (17), (18) and (19), the metric (37), at a fundamental level, has to
be considered as a quantized metric.

As regards the quantized metric (37), it is important to remark that in the ap-
proach developed by Santos in [28], by writing the quantum coefficients of the
metric as (38), where

(A, )=0 exeept (7, ) = %(pm, + Py )1

~ 87G 1 s
and <h11> _T(pDE _Ep,umjr ’ (393)

where <};W> stands for <‘I’|hl |‘I’> , in the approximation of the second order

in the (small) tensor hAW , it is possible to derive the components of quantum
Einstein equations of the form

A 87G
G ==L (40)

In Santos’ approach, the quantum Einstein tensor operator CA?M is expressed

in terms of the operators hA#,, , by resolving these (non-linear coupled partial)
differential operator equations (40) in order to obtain the quantum metric coeffi-
cients gAW in terms of integrals involving the stress-energy tensor operator and

finally calculating the expectations of the metric coefficients éw in terms of

integrals involving the expectations of the stress-energy tensor operator. The
reader can find details of these calculations, for example, in the above reference
[28] and in [29].

Here, we underline that, in analogy with Santos’ results, due to the fact that
the relations between the metric coefficients and the matter stress-energy tensor
are non-linear, the expectation of the quantized metric (37) of the vacuum con-
densate is not the same as the metric of the expectation of the matter tensor (9).
The difference gives rise to a contribution of the vacuum fluctuations which
reproduces the effect of a cosmological constant. Moreover, we will assume that,

when the distance 7 —> o0, one has ¢ — 7, where 1, 1is the Minkowski

nv v 2

metric.
By starting from the quantized metric (37) whose coefficients are defined by
relations (38) and (39), one can obtain the components of the quantum Einstein
equations (40) on the basis of the assumption that they are similar to the classical
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counterparts. In particular, the expectation value of the (operator) metric pa-
rameter l;” may be written in the form

) =(¥

namely it is the sum of two expressions, one containing the matter density
produced by the changes of the quantum vacuum energy density, and the other

indicating the vacuum density fluctuations, p . In equation (41), by model-

ling the matter density of the universe by means of a constant, the matter term
can be expressed as

(¥, A m|¥)... 4D

) +(Y

11 mat

e @)
r r
3 4 QE 3 . .
where M =—7p r =§7Z' ——r", which agrees with the second order ex-

pansion of the well-known Schwarzschild solution

‘. :(1—2GMJ'. @)

7

Moreover, taking into account equation (3), here the dark energy density
p,, can be associated with opportune fluctuations Ap?; of the 3D quantum

vacuum energy density defined by relation

DE mg,. ‘CZ (44)
Ap = ,
QE V

m,, being the mass corresponding to the dark energy p,. in the volume V
and thus

_Apy;

Por JER (45)

In this way, taking into account that according to Santos’ results, the vacuum
contribution appearing in equation (41), to order G, is

(P|h,|¥) = 600G*[ C(s)sds, (46)

vac
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r being a distance which is estimated to fulfil »/s~10", in our model the
vacuum contribution may be expressed as

(W[h,|¥)_ = wolGanQAme;_L, (47)
T

vac qvE
c

where

R (48)

(VzAp:zzijc
C

and, taking into account equation (26), Santos’ integral of the two-point corre-
lation function has been assimilated to the fluctuations of the quantum vacuum
energy density (44) on the basis of equation

VoY1 1 .
(—ZAPMJ e =4[ C(r, ), “49)
c I 0
Therefore, the total expectation value (41) becomes, to order 7
- 87GAp,, 2
<‘P h,, ‘P> =—r 4_15()l(;2,/2 (KAPDZJ ll (50)
3c r ¢ M) r

Hence, a comparison with the Friedmann equations (33), taking account of
relations (26) and (46), leads to the following equation

35G(V 11
=356V p 1L (5D
Po 27:V(c2 p‘"ﬁ)l r
namely
o G [V (52)
2RV \c® "

which states the equivalence of the curvature of space-time produced by the
changes of the quantum vacuum energy density and the one determined by
a constant dark energy density. This means that in the approach based on equa-
tions (37)-(52), the changes and fluctuations of the quantum vacuum energy
density generate a curvature of space-time similar to the curvature produced by
a “dark energy” density. Moreover, it is interesting to observe that, while in
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Santos’ model, the dark energy is associated with the two-point correlation
function of the vacuum fluctuations (on the basis of equation (26)), in the ap-
proach suggested by the authors of this article, the dark energy is directly de-
termined by fluctuations of the quantum vacuum energy density on the basis of
equation (52). It must be emphasized that here the fluctuations of the quantum
vacuum energy density play the same role of Santos’ two-point correlation
function. In other words, there is an equivalence between the fluctuations of
the quantum vacuum energy density and the two-point correlation function: in
the approach here suggested, the fluctuations of the 3D quantum vacuum ener-
gy density act as a two-point correlation function on the basis of relation

¢ (KApDEj ;rC(s)sds. (53)

47Z'h4 cz QvE 0

Moreover, introducing equation (52) into equation (39), the expectation val-
ues of the coefficients of the quantized metric (30) become

(=0 e (i) SHG[A@E 2 L U

c

3 c 27h'V

~\ 87G( Ap, 35G(V ’
and (4 )= - —Ap™ 2, 54
< ”> 3 ( 2¢ 272'714V(CZ ,0‘,‘,5) jr o9

namely turn out to depend directly on the changes of the quantum vacuum
energy density. As a consequence, one can say that the changes and fluctua-
tions of the quantum vacuum energy density, through the quantized metric (37)
of the quantum vacuum condensate whose coefficients are defined by equa-
tions (38) and (54) (and whose underlying microscopic geometry is described
by equations (17)-(19) and, at the cosmological level, by equations (22)-(24))
can be considered the origin of the curvature of space-time characteristic of
general relativity. In other words, one can say that the curvature of space-time
may be considered as a mathematical value which emerges from the quantized
metric (37) and thus from the changes and fluctuations of the quantum vacuum
energy density (on the basis of equations (38) and (54)). In synthesis, accord-
ing to the view suggested in this chapter, the quantized metric (37) associated
with the changes and fluctuations of the quantum vacuum energy density, on
the basis of equations (38) and (54), can be considered as the ultimate visiting
card of general relativity.
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4. ABOUT THE MOTION OF A MATERIAL OBJECT
IN THE CURVED SPACE-TIME

Now, let us see how the curvature of space-time corresponding to the chang-
es and fluctuations of the quantum vacuum energy density acts on a test particle

of mass m,, in other words how the motion of a material object in a background

characterized by changes of its energy density can be treated mathematically.
When a material object corresponding to a given diminishing of the quantum
vacuum energy density moves, this diminishing of the quantum vacuum energy
density — by virtue of its link with the quantum vacuum condensate defined by
equations (54) (and whose underlying microscopic geometry is described by
equations (17)-(19) and, at the cosmological level, by equations (22)-(24)) —
causes a shadowing of the gravitational space which determines the motion of
other material objects present in the region under consideration.

In the approach here suggested, the shadowing of the gravitational space de-
termined by a variable density of quantum vacuum tries inspiration from the idea
of the polarizability of the vacuum in the vicinity of a mass (or other mass-
energy concentrations) introduced by Puthoff’s polarizable model of gravitation
[6]. In order to interpret and reproduce the curvature of space-time Puthoff pos-
tulated the following relation for the variable polarization of the vacuum caused
by the presence of a mass

D=KeF, (55)

where E is the electric field, K is the (altered) dielectric constant of the vacu-
um (typically a function of position) due to (general relativistic-induced) vacu-
um polarizability changes under consideration. Puthoff’s equation (55) estab-
lishes that the presence of electromagnetic energy or massive objects modu-
lates the vacuum polarization in a linear fashion. The vacuum dielectric con-
stant K constitutes the ultimate visiting card of Puthoff’s model. Its effects on
the various measurement processes that characterize general relativity are the
following: the velocity of light changes from ¢ to ¢/K, the time intervals

change from Af, to AtO\/E (which indicates that for K>1, namely in a gravi-
tational potential, the time intervals between clock ticks is increased, that is the
clock runs slower), the lengths of rods change from Az, to Ar /NK . In

Puthoff’s model, the curvature of space — for example in the vicinity of a plan-
et or a star — is associated with the effects on measurement processes of
lengths and time intervals that take place for K>1. Such an influence on the
measuring processes due to induced polarizability changes in the vacuum near
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the body under consideration leads to the general-relativistic concept that the
presence of a body “influences the metric”.

Trying inspiration from Puthoff’s idea of polarizability of the vacuum in our
model we assume that the shadowing (polarization) of the 3D quantum vacuum
can be expressed by the equation

D=xs,E,, (56)

where K is a factor which represents the relatively small amount of the altered
permittivity of the free space (with respect to the situation in which the energy
density of quantum vacuum is given by equation (1)) and

£ =—Hgg(KAp | 35Ge [KApDEJ JLV (57)
r

vE vE
CZ q' 27Z_h4 CZ g’

can be defined as the gravitostatic field determined by both density of matter

and density of dark energy (here H :E2 is the basic gravitodynamic con-
c

stant)z. The gravitostatic field is linked with the quantum vacuum condensate
defined by equations (54) (and whose underlying microscopic geometry is
described by equations (17)-(19) and, at the cosmological level, by equations
(22)-(24)) through relation

¢ G

The total lagrangian density for matter-field interactions in the polarized
vacuum is given by relation

L= [J_ 1—(c/ij2+qq> gA- v]é‘l(F—ro)—E[IflL;O j

p) 2 1 (oKY
- [(VK) R (5) j (59)

P 3H V<h >i2}¢ (58)

* In analogy with Sacharov’s germinal proposal of treatment of gravitation as “met-
ric elasticity” of space [3].
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where (GD,Z) are the gravitational potentials, B is the gravitomagnetic field
defined by

B-n?, (60)
g ® 3
(where j:l_:-i-s;’ Z =rx KAP . +35GC (KA ?Zj v, S; being the SpiIl
C2 q 27Z_h4 CZ q

angular momentum of the material object determined by the diminishing of the
4

. It must

quantum vacuum energy density under consideration) and A =
V4

be emphasized that also the gravitomagnetic field (60), by virtue of the link of
the orbital angular momentum of the material object determined by the dimin-
ishing of the quantum vacuum energy density with the quantum vacuum con-
densate defined by equations (54) expressed by

L= (i), o)
&G
is itself associated with the quantized metric of the quantum vacuum conden-
sate.
Now, in analogy with Puthoff’s polarizable vacuum model of gravitation [6],
variation of the action functional with respect to the test particle variables leads

to the following equation of motion of a test material object of mass m, in the

polarized 3D quantum vacuum:

d| (mx™)v " =\ mc 1+(C;Kj Vi (62)
L =m,(CE, +7xB )+ K

dt 2 . o
(o) (o7
clk c/k

Equation (62) shows that there are two forces acting onto the test particle of
mass m,: the Lorentz force due to the quantum vacuum energy density sur-
rounding the object and a second term representing the dielectric force propor-
tional to the gradient of the shadowing of quantum vacuum (56). The importance
of this second term lies in the fact that thanks to it one can account for the gravi-
tational potential, either in Newtonian or general relativistic form. It might be
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. . . c
interesting to note that with m — 0 and v — —, as would be the case for
K

a photon, the deflection of the trajectory is twice as the deflection of a slow
moving massive particle. This is an important indication of conformity with
general relativity.

Variation of the action functional with regard to the x variable leads to the
expression of the generation of the shadowing of the gravitational space within
general relativity, owed to the presence of both matter and fields. The equation
has three right-hand side terms:

1 Nk -k
vik-—— X TR TP R(x)]. (63)
" (c/ic)2 or 42 (x)+O(x)+ (K)]
Here P(K) represents the change in space shadowing by the mass density

associated with the object of mass m,, with the vector 7 as the distance from
the system mass centre:

e o)
P(K)_J%Jl( - Jz-&(
c/ K

Q(K) is the change caused by the energy density of the fields (57) and (60)
determined by the diminishing of the quantum vacuum energy density:

) (64)

F=F).

Q(K):%[f; +K6‘0Eg2]. (65)

R(K') is the change caused by the quantum vacuum shadowing energy density
itself:

R(K):_%((VK)Z+ (c/lK)z @_’;U (66)

In the case of a static gravity field of a spherical mass distribution (a planet
or a star), the solution of equation (63) has a simple exponential form:

\/; — eGM/rcz (67)
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VAp,,

where M =——=_ The solution (67) can be approximated by expanding it

c
into a series:

2 2

o 2GM  1(26M Y
k=" =1+ G +—( G j +.... (68)
re 2\ rc

This solution reproduces (to the appropriate order) the usual general-
relativistic Schwarzschild metric predictions in the weak field limit conditions
(i.e. solar system).

According to this model, it is important to underline that also particles with-
out mass (for example, photons) have an indirect influence on the quantum vac-
uum energy density. In fact, because of equation (65) also a photon will add
a contribution to the effective curvature of space-time associated with the fields
(57) and (60). This result turns out to be also in accordance with general theory
of relativity, where both mass and energy cause the curvature of space-time.

Moreover, with the obtained solution (67) or (68) regarding the factor x
measuring the polarizability of the quantum vacuum in the presence of matter,
one can analyze the gravitational red shift characteristic of general relativity, and
find inside this approach a more detailed form in order to obtain the frequency
shift of the photon emitted by an atom on the surface of a star of mass M and
radius R. Just like in Puthoff’s model, the photon detected far away from the star
will appear red shifted by the following amount:

Ao _o-o, GM (69)

~

~

2 b
o, , Rc

where we have assumed

RA/ZI << 1. The photon, after having climbed up the
c

gravity potential of the star, will retain its acquired frequency unchanged, and
the change in frequency can be tested locally by comparing it with photons
emitted by the same type of atoms at the same temperature, but within the
weak gravity field of the laboratory.

With that same result it is also possible to analyse the amount of the bending
of light rays from a distant star passing near a massive body, like in the classic
general relativity test performed by Eddington’s expedition during the solar
eclipse in May 1919. The light ray from a distant star, while passing close to the
Sun, will experience a gradual slowing of wavefront velocity coming towards
the Sun, and a gradual increasing velocity in leaving the Sun’s gravity field.
Because x increases closer to a massive body ( x > 1), the velocity of light will

vary as ¢/ Kk . The part of the wavefront closer to the Sun will thus experience a
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greater slowdown than the part of the wavefront passing further away. This is
seen from the Earth as an apparent shift of the position of the star close to the
Sun’s disk edge in the outward direction. In general relativity’s terms, this de-
flection is a measure of local space-time curvature. We are interested in calculat-
ing the total bending angle. Because in case of the Sun the total deflection is
small (¢ <2 arc-seconds) we can apply the usual low angle approximations
throughout the calculation. And because of the same reason we will not make a
big mistake if we approximate the variable velocity of light to the first order
term of the series expansion (66) of x :

¢ c 2GM (70)
L Yoy A L
K 1+ - rc
rc

In this relation the radius-vector » denotes the distance of the wavefront from
the centre of the Sun as it travels by from —o0 to +co0, with the minimum dis-
tance of R+0 where R is the Sun’s radius, and O is the minimum distance
from the Sun’s surface. By assigning z to the distance of the wavefront along the
line of sight (perpendicular to R+0), the radius-vector becomes

r= (R +0 )2 +z’, so0 the equation (70) can be written as:

v re 1_2GM‘ 1 . (71)

c’ (R+3) +z2°

The differential velocity of light, assuming 6 << R, is then

ppo2OM RS 72)
¢ (R+7)

As the wavefront travels a distance dz ~ vdt, the differential velocity along
the path of light results in an accumulated wavefront path difference Az :

Az = Avdt = 2GM . Ro dz. (73)

o (Rz + 5 )3/2

This results in an accumulated tilt angle of:

GM RS (74)
c’ (R2+22)3/2

qozAz/Szz
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By integrating equation (74) over the entire path —oo0 < z < 400 yields:

_4rGM (75)
Rc

By inserting G=6,672-10"Nm’Kg”, M =1,9891-10"Kg, and
R=6,96-10"m, we obtain ¢ =1,75 arc-seconds, which is exactly the value

predicted by Einstein’s general theory of relativity in 1915, and experimentally
verified by Eddington in 1919 (between 1.2 and 1.9 arc-seconds, mainly because
of the imperfect optics of the portable telescopes used).

Moreover, as regards the equations of motion (62) and (63), it is important to
emphasize that, according to this approach, the modification of the quantum
vacuum energy density determining both the matter density and dark energy
density and the action of the shadowed quantum vacuum on another material
object are phenomena directly determined by the fields (60), (64), (65) and (66).
This implies that no time is needed to transmit the information from a material
object to the surrounding region in order to shadow the gravitational space be-
cause the change of the quantum vacuum energy density is already there as it is
associated with the fields (60), (64), (65) and (66) (what propagates from point
to point is just the actual effects of this change); and, on the other hand, that no
time is needed to transmit the information from the shadowed gravitational space
to another material object in order to cause its movement.

Finally, according to the view proposed here, the 3D quantum vacuum as a
direct medium for the transmission of gravitation established by equations (64),
(65) and (66) can express in an elegant mathematical way the perspective about
the non-existence of gravitational waves. In this regard, it seems compatible with
some Loinger’s results according to which gravitational waves are only hypo-
thetical and do not exist in the physical world [30, 31]. On the other hand, de-
spite several attempts of research about the gravitational field performed since
the 1960s (see for example the reference [32]), gravitational waves have not yet
been detected. As underlined by Schorn in the paper [33], “To search for gravita-
tional waves in a laboratory, classical or quantum mechanical detectors can be
used. Despite the experiments of Weber (1960 and 1969) and many others
(Braginskij et al., 1972; Drever et al., 1973; Levine and Garwin, 1973; Tyson,
1973; Maischberger et al., 1991; Abramovici et al., 1992; and Abramovici et al.,
1996) and theoretical calculations and estimations (Braginski and Rudenko,
1970; Harry et al., 1996; and Schutz, 1997), gravitational waves have never been
observed directly in laboratory”.

It is also interesting to observe that recent NASA research confirms that uni-
versal space is flat with only a 0.4% margin of error which is a strong indication
that curvature of space in general theory of relativity is only a mathematical
description of energy density of universal space which originates in a more fun-
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damental energy density of quantum vacuum [34]. NASA measurements regard-
ing the geometry of universal space turn out to be completely in agreement with
the approach developed in this paper.

5. CONCLUSIONS

A model of a three-dimensional quantum vacuum has been proposed in
which the curvature of space-time emerges, in the hydrodynamic limit of some
underlying theory of a microscopic structure of space-time, as a mathematical
value of a more fundamental actual energy density of quantum vacuum. The
fluctuations of the quantum vacuum energy density generate a curvature of
space-time similar to the curvature produced by a “dark energy” density and
produce a shadowing of the gravitational space which determines the motion of
other material objects present in the region under consideration. In this approach,
the interesting perspective is opened that the three-dimensional quantum vacuum
acts as a direct medium of gravitation: at a fundamental level, no time (as dura-
tion) is needed to transmit gravity force. A given material object diminishes
energy density of quantum vacuum which generates curvature of space-time.
Gravity does not act directly between massive objects, gravity acts in the quan-
tum vacuum: the changes of the quantum vacuum energy density cause curva-
ture of space-time which generate gravitational attraction between massive bod-
ies. This view does not require existence of hypothetical graviton as a “carrier”
of gravity.
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