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Affine invariants of annuli

Abstract. A family of regular annuli is considered. Affine invariants of
annuli are introduced.

1. Introduction. We denote by C a family of all plane, closed, strictly
convex and regular curves (of the class C1). It is well known [1], [4] that a
curve C ∈ C can be parametrized by

(1.1) z (t) = p (t) eit + ṗ (t) ieit for t ∈ [0, 2π] ,

where p is the support function of C (the dot denotes the differentiation
with respect to t). The tangent vector ż (t) to C at z (t) is equal to

(1.2) ż (t) = R (t) ieit,

where the curvature radius R of C is given by the formula

(1.3) R = p+ p̈ > 0.

We denote by Λ a family of all 2π-periodic, positive-valued functions
λ : R→ R of the class C1.

In this paper we will consider a family CΛ of annuli. An annulus CD is
an element of CΛ if and only if

1o the inner curve C belongs to C,
2o the outer curve D can be parametrized in the form

(1.4) w (t) = z (t) + λ (t) ieit for t ∈ [0, 2π]
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with some function λ ∈ Λ.
We will use the differential equation

(1.5) λη̇ = Rη −R
and its solution in the form

(1.6) η (t, c) = 1− c exp

t∫
0

R (m)

λ (m)
dm for t ∈ [0, 2π] ,

where c is an arbitrary constant.

2. Invariants of annuli. We note that

Theorem 2.1. Let an annulus CD belongs to CΛ. The number co (CD)
given by the formula

(2.1) co (CD) = exp

− 2π∫
0

|ż(t)|
λ (t)

dt

 = exp

− 2π∫
0

R (t)

λ (t)
dt


does not depend on parametrizations of C, D and affine transformations.

For the proof it suffices to note that ż(t) = R(t)ieit and w(t) − z(t) =
λ(t)ieit. It follows from (2.1) that

(2.2) 0 < co (CD) < 1.

Let co = co (CD). If c ∈ [0, co], then we have

(2.3) 0 < η (t, c) ≤ 1.

We consider a family of curves

(2.4) V (CD) = {V (c) : 0 < c ≤ co} ,
where a curve V (c) is given by the formula

(2.5) v (t, c) = z (t) + η (t, c)λ (t) ieit for t ∈ [0, 2π] .

Of course, curves of the family V (CD) are affine invariants. The inequal-
ity (2.3) implies that all curves of the family V (CD) are contained in the
annulus CD and V (0) = D. We have

(2.6) v (0, c)− v (2π, c) = c
1− co
co

λ (0) i.

It follows from (2.6) and (2.2) that a curve V (c) is not closed.
For a fixed curve V (c) we have v (0, c) = w (0) − cλ (0) i and v (2π, c) =

w (0)− c
co
λ (0) i. It is easy to see that the end point v (2π, c) of V (c) belongs

to the segment joining points w (0) and v (0, co) if c < c2o. It means that if
c < c2o, then the end point of V (c) is the beginning point of another curve
of the family V (CD).
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Figure 1

Theorem 2.2. Let CD ∈ CΛ and C be a curve of the class C2. The
following relations between tangent vectors and curvatures of V (c) and D
hold

(2.7) v̇ = ηẇ

and

(2.8) ηkV (c) = kD.

Proof. Differentiating (2.5) and using the differential equation (1.5), we
obtain

v̇ =
(
R+ η̇λ+ ηλ̇

)
ieit − ηλeit = η

(
−λeit +

(
R+ λ̇

)
ieit
)

= ηẇ.

Hence we obtain immediately (2.8). �

The following theorem explains a geometric meaning of the invariant co.

Theorem 2.3. Let CD ∈ CΛ. For an arbitrary curve V (c) ∈ V (CD) we
have

(2.9)
∣∣∣∣v (2π, c)− v (0, c)

v (0, c)− w (0)

∣∣∣∣ =
1− co
co

,

where co = co (CD).
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Proof. We have

(2.10) w (0)− v (0, c) = (1− η (0, c))λ (0) i = cλ (0) i.

The formulas (2.6) and (2.10) imply (2.9). �

Remark. Theorem 2.3 is true if we take

ṽ (t, c) = z (t) + η̃ (t, c)λ (t) ieit for t ∈ [to, to + 2π] ,

where

η̃ (t, c) = 1− c exp

t∫
to

R (m)

λ (m)
dm for t ∈ [to, to + 2π] .

3. Estimation of co. Let C ∈ C. We fix λ ∈ Λ and we denote by C (λ)
a curve given by the formula (1.4), i.e. w (t) = z (t)+λ (t) ieit for t ∈ [0, 2π].
Let

(3.1) λm = min
[0,2π]

λ, λM = max
[0,2π]

λ, L (C) = length C.

The obvious inequality

L (C)

λM
≤

2π∫
0

R (t)

λ (t)
dt ≤ L (C)

λm

implies the inequality for co (CC (λ)), namely

(3.2) exp

(
−L (C)

λm

)
≤ co (CC (λ)) ≤ exp

(
−L (C)

λM

)
.

We note that

Theorem 3.1. Let A,B ∈ C and L (A) = L (B). If the function λ ∈ Λ is
constant, then

(3.3) co (AA (λ)) = co (BB (λ)) .

4. Special plane annuli. Let Sm denote the circle with the center at the
origin and the radius m. We consider an annulus SrSρ, where ρ > r. We
have λ (t) =

√
ρ2 − r2, R (t) = r and

(4.1) co = co (SrSρ) = exp

(
−2πr√
ρ2 − r2

)
.

Moreover, we have

(4.2) η (t, c) = 1− c exp
rt√
ρ2 − r2

and

(4.3) v (t, c) = reit +

(
1− c exp

rt√
ρ2 − r2

)√
ρ2 − r2ieit
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for t ∈ [0, 2π] and c ∈ [0, co].

Figure 2

Two curves v(t, c) given by (4.3) for c = 0.01 and c = 0.02 in a circular
annulus formed by two concentric circles with r = 1 and ρ = 2 are presented
in Figure 2.

Theorem 4.1. Let CD ∈ CΛ. We assume that C is of the class C2 and D
is a circle. The curvature kV (c) of a curve V (c) is an increasing function.

Proof. Let t2 > t1. The formulas (2.8) and (1.6) imply the inequality

kV (c) (t2)− kV (c) (t1) = kD

(
1

η (t2, c)
− 1

η (t1, c)

)
=

kD
η (t2, c) η (t1, c)

c

(
exp

∫ t2

0

R(m)

λ(m)
dm− exp

∫ t1

0

R(m)

λ(m)
dm

)
> 0,

where c ∈ (0, c0). Thus the curvature kV (c) is an increasing function. �

Let Cα be an α-isoptic of C ∈ C. We recall that an α-isoptic Cα of C
consists of those points in the plane from which the curve is seen under the
fixed angle π − α, see [2], [3]. Cα has the form

(4.4) zα (t) = z (t)+λ (t, α) ieit = z (t, α)+µ (t, α) iei(t+α) for t ∈ [0, 2π] ,
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where

(4.5) λ (t, α) =
1

sinα
[p (t+ α)− p (t) cosα− ṗ (t) sinα]

and

(4.6) µ (t, α) =
1

sinα
[p (t+ α) cosα− ṗ (t+ α) sinα− p (t)] < 0.

Moreover, we have

(4.7)
∂λ

∂α
=
−µ

sinα
> 0,

see [3].
We consider a family of all annuli CCα and the function

(4.8) co (α) = co (CCα) = exp

− 2π∫
0

R (t)

λ (t, α)
dt

 for α ∈ (0, π) .

With respect to (4.8) we have

d

dα

2π∫
0

R (t)

λ (t, α)
dt =

2π∫
0

R (t)µ (t, α)

λ3 (t, α)
dt < 0.

Hence and from the definition of co (α) it follows immediately that the
mapping α→ co (α) is strictly increasing.
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