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Affine invariants of annuli

ABSTRACT. A family of regular annuli is considered. Affine invariants of
annuli are introduced.

1. Introduction. We denote by C a family of all plane, closed, strictly
convex and regular curves (of the class C1). It is well known [1], [4] that a
curve C' € C can be parametrized by

(1.1) 2(t) =p(t) e +p(t)ie? forte|0,2n],

where p is the support function of C' (the dot denotes the differentiation
with respect to ¢). The tangent vector z (t) to C at z (t) is equal to

(1.2) 2(t) = R(t)ie",
where the curvature radius R of C is given by the formula
(1.3) R=p+p>0.

We denote by A a family of all 27-periodic, positive-valued functions
A :R — R of the class C'.
In this paper we will consider a family CA of annuli. An annulus C'D is
an element of CA if and only if
1° the inner curve C' belongs to C,
2° the outer curve D can be parametrized in the form

(1.4) w(t) =z (t)+X(t)ie" for t€[0,27]
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with some function A € A.

We will use the differential equation
(1.5) AM=Rn—R

and its solution in the form

=

(m)

N m) dm for t € [0, 27|,

¢
(1.6) n(t,c) = 1—cexp/
0

where ¢ is an arbitrary constant.

2. Invariants of annuli. We note that

Theorem 2.1. Let an annulus CD belongs to CA. The number ¢, (CD)
given by the formula

27

2w
(2.1) ¢ (CD) = exp —/ |§((tt))’dt = exp —/f((:))dt
0 0

does not depend on parametrizations of C, D and affine transformations.

For the proof it suffices to note that z(t) = R(t)ie and w(t) — z(t) =
A(t)ie'. Tt follows from (2.1) that

(2.2) 0<c¢(CD)<1.

Let ¢, = ¢, (CD). If ¢ € [0, ¢,], then we have

(2.3) 0<n(te) <L

We consider a family of curves

(2.4) V(CD)={V(c):0<ec<co},

where a curve V (¢) is given by the formula

(2.5) v(t,c) =z (t) +n(t,c)\(t)ie® forte[0,2n].

Of course, curves of the family V (CD) are affine invariants. The inequal-
ity (2.3) implies that all curves of the family V (C'D) are contained in the
annulus CD and V (0) = D. We have

(2.6) v(0,¢) —v(2m,c) = c1 —

A (0) 1.
—EA(O)i
It follows from (2.6) and (2.2) that a curve V (¢) is not closed.

For a fixed curve V (¢) we have v (0,¢) = w (0) — cA(0) i and v (27,¢) =
w (0) = ZA(0)d. It is easy to see that the end point v (2, ¢) of V' (c) belongs
to the segment joining points w (0) and v (0, ¢,) if ¢ < ¢2. It means that if

¢ < c2, then the end point of V (¢) is the beginning point of another curve
of the famlly V(CD,).
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FIGURE 1

Theorem 2.2. Let CD € CA and C be a curve of the class C?. The

following relations between tangent vectors and curvatures of V (¢) and D
hold

(2.7) U= nw
and

Proof. Differentiating (2.5) and using the differential equation (1.5), we
obtain

U= (R + A+ 77)\> et — et = (—)\eit + (R + /\> ieit> = mb.
Hence we obtain immediately (2.8). O
The following theorem explains a geometric meaning of the invariant c,.

Theorem 2.3. Let CD € CA. For an arbitrary curve V (¢) € V (CD) we
have

v (2m,c) —v(0,c)
v (0,¢) —w (0)

_1—60

(2.9)

)

Co

where ¢, = ¢, (CD).
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Proof. We have
(2.10) w(0) —v(0,¢) = (1 =7 (0,¢)) A(0)i = cA(0)1.
The formulas (2.6) and (2.10) imply (2.9). O
Remark. Theorem 2.3 is true if we take
O(t,c) =2z (t) +7(t,c) \(t)ie® fort € [to,t, + 27,

where ,

R (m)

ﬁ(t,c)zl—cexp/wdm for t € [to,to + 27].

3. Estimation of c,. Let C' € C. We fix A € A and we denote by C (})
a curve given by the formula (1.4), i.e. w (t) = 2 (t)+ A (t) ie® for t € [0, 27].
Let

(3.1) Am = min A\, Ay =max), L (C)=length C.
[0,27] [0,27]

to

The obvious inequality

Y

L(C) R(t) . _L(C)
SO/)\( dt <

AM

2
implies the inequality for ¢, (CC (X)), namely

(3.2) exp (‘i(C)> < ¢ (CC (X)) < exp <_i (C)> .

m M

We note that
Theorem 3.1. Let A,B € C and L(A) = L(B). If the function \ € A is

constant, then
(3.3) e (AA(N) = co (BB ().

4. Special plane annuli. Let S, denote the circle with the center at the
origin and the radius m. We consider an annulus S,.S,, where p > r. We

have A (t) = \/p? — 712, R(t) =r and

—2mr
(4.1) Co = Co (5rSp) = exp (M) :
Moreover, we have
t
(4.2) n(t,c) =1—cexp L
/p2 — 12
and

. t A
(4.3) v (t,c) =re' + <1 — cexp T) v p? — r2ie”
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for t € [0,27] and ¢ € [0, ¢,].

v

FIGURE 2

Two curves v(t, ¢) given by (4.3) for ¢ = 0.01 and ¢ = 0.02 in a circular
annulus formed by two concentric circles with r = 1 and p = 2 are presented
in Figure 2.

Theorem 4.1. Let CD € CA. We assume that C is of the class C? and D
is a circle. The curvature ky () of a curve V (c) is an increasing function.

Proof. Let t2 > t;. The formulas (2.8) and (1.6) imply the inequality

1 1
kV(c) (t2) — k;V(C) (t1) = kp (77 (ta,c) a n(t1, C))

_k—DC ex * R(m) m — ex thm
~ n(ta,¢)n(ty,c) < p 0 )\(m>d p/o )\(m)d >>0,

where ¢ € (0,¢p). Thus the curvature ky () is an increasing function. g

Let Cy be an a-isoptic of C' € C. We recall that an a-isoptic Cy of C
consists of those points in the plane from which the curve is seen under the
fixed angle m — «, see [2], [3]. C4 has the form

(4.4) 2z (t) = 2 () + A (t, @) ie® = 2 (t, @)+ (t, ) i) for t € [0,27],
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where
(4.5) At,a) = siia [p(t+a)—p(t)cosa —p(t)sina]
and

(4.6) p(t,a) =

Moreover, we have

o [p(t+a)cosa—p(t+a)sina—p(t)] <O0.

ox  —p

da  sina

(4.7)

see [3].
We consider a family of all annuli CC,, and the function

> 0,

2m
(4.8) Co (@) =¢, (CCy) =exp | — / )\]?t(t(i)dt for o € (0, 7).
0

With respect to (4.8) we have
2m 2m
d [ R(1) R(t)p(t,a)
— | ——dt = | —=——5>dt < 0.
do | N, ) / ¥ (ha) ©°
0 0

Hence and from the definition of ¢, («) it follows immediately that the

mapping a — ¢, («) is strictly increasing.
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