ANNALES UNIVERSITATIS MARIAE CURIE-SKŁODOWSKA LUBLIN – POLONIA

VOL. LXVIII, NO. 2, 2014

SECTIO A

19 - 26

WALDEMAR CIEŚLAK, HORST MARTINI and WITOLD MOZGAWA

Rotation indices related to Poncelet's closure theorem

ABSTRACT. Let $C_R C_r$ denote an annulus formed by two non-concentric circles C_R, C_r in the Euclidean plane. We prove that if Poncelet's closure theorem holds for k-gons circuminscribed to $C_R C_r$, then there exist circles inside this annulus which satisfy Poncelet's closure theorem together with C_r , with n-gons for any n > k.

1. Introduction. Poncelet's closure theorem, going back to the 19th century, has various interesting forms and applications; cf. [2], [7], [4], [9], and the excellent survey [3] as well as [4]. The rich history of this theorem is presented in [1, Ch. 16], [8, § 2.4], and [7], and our paper refers to circular versions of it. Let C_R, C_r be two circles with radii R > r > 0 and C_r lying inside C_R . From any point on C_R , draw a tangent to C_r and extend it to C_R again, using the obtained new intersection point with C_R for starting with a new tangent to C_r , etc.; the system of tangential segments obtained in this way inside C_R is called a Poncelet transverse (or bar billiard). We say that the annulus $C_R C_r$ has Poncelet's porism property if there is a starting point on C_R for which a Poncelet transverse is a closed polygon. Poncelet's closure theorem (for circles) says that then the transverse will also close for any other starting point from C_R . It is known that such closing polygons (with or without self-intersections) correspond to rational rotations; e.g.,

²⁰¹⁰ Mathematics Subject Classification. 51M04, 51N20, 52A10, 53A04.

Key words and phrases. Bar billiards, Euler's triangle formula, Poncelet's closure theorem, Poncelet's porism property.

the rotation number or *index* $\frac{1}{3}$ is related to a triangle "between" C_R and C_r , and the index $\frac{2}{5}$ to a (self-intersecting) pentagram.

In [6] it was proved that "close" to a pair of circles, which have Poncelet's porism property for index $\frac{1}{3}$, there exist unique pairs of circles having this property with respect to indices $\frac{1}{4}$ and $\frac{1}{6}$, and it was conjectured there that this holds true for arbitrary indices.

In the present paper we show that this conjecture is true in the following sense: for a pair of circles having Poncelet's porism property for index $\frac{1}{k}$, with $k \geq 3$ as natural number, we prove that there exists a circle lying between the starting circles such that this circle together with the smaller given circle has Poncelet's porism property for any given index $\frac{1}{n}$, where n is an arbitrary natural number with n > k.

2. Basic notions and tools. Let us consider a circular annulus $C_r C_{a,R}$ formed by two circles C_r and $C_{a,R}$. The circles C_r and $C_{a,R}$ are given by the equations $x^2 + y^2 = r^2$ and $(x - a)^2 + y^2 = R^2$, respectively, with (1) 0 < a < R - r.

Recall the following form of Poncelet's closure theorem which is suitable for our purpose; see [1].

If there exists a one circuminscribed (i.e., simultaneously inscribed in the outer circle and circumscribed about the inner circle) n-gon in a circular annulus, then any point of the outer circle is the vertex of some circumin-scribed n-gon.

If Poncelet's closure theorem holds for n = 3, then Euler's condition

(2)
$$R^2 - 2Rr - a^2 = 0$$

is satisfied. We will denote this condition by $Pct(C_rC_{a,R},3)$. There is no elementary formula for the analogously defined condition $Pct(C_rC_{a,R},n)$, but we note that $Pct(C_rC_{a,R},4)$ and $Pct(C_rC_{a,R},6)$ have the forms

(3)
$$(R^2 - a^2)^2 = 2r^2(R^2 + a^2)$$

and

(4)
$$3\left(R^2 - a^2\right)^4 = 4r^2\left(R^2 + a^2\right)\left(R^2 - a^2\right)^2 + 16r^2a^2R^2,$$

respectively; see [3].

It is amazing that for particular natural numbers we have elementary conditions involving also radicals, while for an arbitrary natural number $n \ge 3$ only the Jacobi formula (cf. formula (7) in [10]), using elliptic functions, is involved.

For further use we introduce a convenient parametrization of the annulus $C_r C_{a,R}$. Namely, we take the parametrization $z(t) = re^{it}$ for C_r , and for $C_{a,R}$ we use

(5)
$$w(t) = z(t) + \lambda(t) i e^{it}, \quad t \in [0, 2\pi],$$

where $\lambda(t) = \sqrt{R^2 - (r - a\cos t)^2} - a\sin t$.

The line which is tangent to the circle C_r at a point z(t) intersects the circle C_R at a point $w(t) = z(t) + \lambda(t)ie^{it}$. Let us draw a second tangent line to C_r , passing at w(t). It intersects C_r at a point $z(\varphi(t))$, where $\varphi(t)$ satisfies the condition

(6)
$$\tan\frac{\varphi(t)-t}{2} = \frac{\lambda(t)}{r}.$$

In [5] it is proved that

(7)
$$\varphi' = \frac{\sqrt{1 - (\sigma \circ \varphi)^2}}{\sqrt{1 - \sigma^2}},$$

where

(8)
$$\sigma(t) = \frac{r - a\cos t}{R}.$$

It is routine to check that the solution of this differential equation with initial condition $\varphi(0) = m$ is given by the formula

(9)
$$\varphi(t) = B^{-1} \left(B \left(t \right) + B \left(m \right) \right),$$

where

(10)
$$B(t) = \int_{0}^{t} \frac{ds}{\sqrt{1 - \sigma^{2}(s)}}$$

3. Results and proofs.

Theorem 1. Poncelet's closure theorem holds in the annulus $C_rC_{a,R}$ for *n*-gons, $n \geq 3$, if and only if the following identity holds:

(11)
$$B\left(t+2\arctan\frac{\lambda(t)}{r}\right) \equiv B\left(t\right) + \frac{1}{n}B\left(2\pi\right)$$

Proof. \Rightarrow) From the assumption it follows that Poncelet's transverse closes after *n* reflections, forming a circuminscribed convex *n*-gon. This is equivalent to the condition

(12)
$$\varphi^{[n]}(t) = t + 2\pi$$
 for all $t \in \mathbb{R}$,

where

(13)
$$\varphi^{[1]} = \varphi$$
 and $\varphi^{[n+1]} = \varphi^{[n]} \circ \varphi$ for $n = 1, 2, 3, \dots$

Note that formula (9) implies

(14)
$$\varphi^{[n]}(t) = B^{-1}(B(t) + nB(m)).$$

From (12) and (14) it follows immediately that

(15)
$$B(2\pi) = nB(m).$$

Finally, the function φ is given by the formula

(16)
$$\varphi(t) = B^{-1} \left(B(t) + \frac{1}{n} B(2\pi) \right).$$

and

(17)
$$\varphi(0) = m = B^{-1} \left(\frac{1}{n} B\left(2\pi\right)\right).$$

From (6) we get

(18)
$$\varphi(t) = t + 2 \arctan \frac{\lambda(t)}{r}.$$

The formulas (17) and (18) imply the identity (11). \Leftarrow) Assume that in the annulus $C_r C_{a,R}$ the identity (11) holds for some natural number $n \ge 3$. From the formulas (10) and (16) we get

$$\varphi^{[n]}(t) = B^{-1}(B(t) + B(2\pi)) = B^{-1}(B(t+2\pi)) = t + 2\pi.$$

Now, using (10), we can rewrite the identity (11) in the form

(19)
$$\int_{0}^{t+2\arctan\frac{\lambda(t)}{r}} \frac{1}{\sqrt{1-\sigma^{2}(s)}} ds \equiv \int_{0}^{t} \frac{1}{\sqrt{1-\sigma^{2}(s)}} ds + \frac{1}{n} \int_{0}^{2\pi} \frac{1}{\sqrt{1-\sigma^{2}(s)}} ds.$$

Hence we have

(20)
$$\int_{t}^{2 \arctan \frac{\lambda(t)}{r}} \frac{1}{\sqrt{1 - \sigma^2(s)}} ds \equiv \frac{1}{n} \int_{0}^{2\pi} \frac{1}{\sqrt{1 - \sigma^2(s)}} ds.$$

In the particular case t = 0 we have

(21)
$$\int_{0}^{2 \arctan \frac{1}{r} \sqrt{R^2 - (r-a)^2}} \frac{1}{\sqrt{1 - \sigma^2(s)}} ds = \frac{1}{n} \int_{0}^{2\pi} \frac{1}{\sqrt{1 - \sigma^2(s)}} ds.$$

This is exactly the formula (5.6) from [5], and we note that it implies Poncelet's porism property for *n*-gons.

Introducing

(22)
$$V_{\xi} = \frac{1}{r} \sqrt{\left[(1-\xi) r + \xi R \right]^2 - (r-\xi a)^2}$$

for $\xi \in [0, 1]$, we have

(23)
$$V_{\xi} = \frac{1}{r} \sqrt{(R - r + a) \left[(R - r - a) \xi^2 + 2r\xi \right]}.$$

Since 0 < a < R - r, we can write

(24)
$$V_{\xi} = \frac{1}{r} c(\xi) \sqrt{R - r + a} \quad \text{for } \xi \in [0, 1],$$

where

(25)
$$c(\xi) = \sqrt{(R-r-a)\xi^2 + 2r\xi}.$$

Note that

(26)
$$V_1 = \frac{1}{r}\sqrt{R^2 - (r-a)^2}$$
 and $V_0 = 0.$

Similarly, we define

(27)
$$\sigma_{\xi}(t) = \frac{r - \xi a \cos t}{(1 - \xi) r + \xi R} \quad \text{for } \xi \in [0, 1],$$

and one has $\sigma_1 = \sigma$ and $\sigma_0 = 1$.

Now we will prove our main theorem.

Theorem 2. Assume that Poncelet's closure theorem holds in an annulus $C_rC_{a,R}$ for k-gons, $k \ge 3$. Then for any n > k there exists $\gamma \in (0,1)$ such that Poncelet's closure theorem holds in the annulus $C_rC_{\gamma a,(1-\gamma)r+\gamma R}$ for *n*-gons.

Proof. Using the equality (20) from the proof of Theorem 1, we introduce the function

(28)
$$F_n(\xi) = n \int_{0}^{2 \arctan V_{\xi}} \frac{1}{\sqrt{1 - \sigma_{\xi}^2(s)}} ds - \int_{0}^{2\pi} \frac{1}{\sqrt{1 - \sigma^2(s)}} ds.$$

First we have

$$F_{n}(1) = n \int_{0}^{2 \arctan V_{1}} \frac{1}{\sqrt{1 - \sigma^{2}(s)}} ds - \int_{0}^{2\pi} \frac{1}{\sqrt{1 - \sigma^{2}(s)}} ds.$$

From now on we assume that the starting annulus $C_r C_{a,R}$ has Poncelet's porism property for a natural number $k \geq 3$, and we consider n > k. Then by (20) we have

(29)
$$k \int_{0}^{2 \arctan V_{1}} \frac{1}{\sqrt{1 - \sigma^{2}(s)}} ds = \int_{0}^{2\pi} \frac{1}{\sqrt{1 - \sigma^{2}(s)}} ds.$$

Using this condition, we get

$$F_{n}(1) = (n-k) \int_{0}^{2 \arctan V_{1}} \frac{1}{\sqrt{1-\sigma^{2}(s)}} ds + k \int_{0}^{2 \arctan V_{1}} \frac{1}{\sqrt{1-\sigma^{2}(s)}} ds - \int_{0}^{2\pi} \frac{1}{\sqrt{1-\sigma^{2}(s)}} ds = (n-k) \int_{0}^{2 \arctan V_{1}} \frac{1}{\sqrt{1-\sigma^{2}(s)}} ds > 0.$$

In order to evaluate $F_n(0)$, we first calculate the value $F_n(\varepsilon)$ for $\varepsilon \in (0, 1)$. We have

$$F_{n}(\varepsilon) = n \int_{0}^{2 \arctan V_{\epsilon}} \frac{1}{\sqrt{1 - \sigma_{\varepsilon}^{2}(s)}} ds - \int_{0}^{2\pi} \frac{1}{\sqrt{1 - \sigma_{\varepsilon}^{2}(s)}} ds$$
$$= (n - 1) \int_{0}^{2 \arctan V_{\epsilon}} \frac{1}{\sqrt{1 - \sigma_{\varepsilon}^{2}(s)}} ds - \int_{2 \arctan V_{\epsilon}}^{2\pi} \frac{1}{\sqrt{1 - \sigma_{\varepsilon}^{2}(s)}} ds.$$

First we prove that

(30)
$$\lim_{\varepsilon \to 0^+} \int_{0}^{2 \arctan V_{\epsilon}} \frac{1}{\sqrt{1 - \sigma_{\varepsilon}^2(s)}} ds \le C,$$

for some positive constant C. We calculate

$$\begin{split} & 2 \arctan V_{\epsilon} \\ & \int_{0}^{2 \arctan V_{\epsilon}} \frac{1}{\sqrt{1 - \sigma_{\epsilon}^{2}\left(s\right)}} ds \\ & = \int_{0}^{2 \arctan \frac{1}{r}c(\epsilon)\sqrt{R - r + a}} \left[1 - \left(\frac{r - a\epsilon \cos t}{(1 - \epsilon)r + \epsilon R}\right)^{2} \right]^{-\frac{1}{2}} dt \\ & = \int_{0}^{2 \arctan \frac{1}{r}c(\epsilon)\sqrt{R - r + a}} \left(\frac{\left[(1 - \epsilon)r + \epsilon R\right]^{2} - (r - \epsilon a \cos t)^{2}}{((1 - \epsilon)r + \epsilon R)^{2}} \right)^{-\frac{1}{2}} dt \\ & = \int_{0}^{2 \arctan \frac{1}{r}c(\epsilon)\sqrt{R - r + a}} \frac{(1 - \epsilon)r + \epsilon R}{\sqrt{(R - r + a \cos t)\left[(R - r - a \cos t)\epsilon^{2} + 2r\epsilon\right]}} dt \end{split}$$

$$\leq \int_{0}^{2 \arctan \frac{1}{r}c(\varepsilon)\sqrt{R-r+a}} \frac{(1-\varepsilon)r+\varepsilon R}{\sqrt{(R-r-a)\left[(R-r-a)\varepsilon^{2}+2r\varepsilon\right]}} dt$$

$$= \left[(1-\varepsilon)r+\varepsilon R\right] \int_{0}^{2 \arctan \frac{1}{r}c(\varepsilon)\sqrt{R-r+a}} \frac{1}{c\left(\varepsilon\right)\sqrt{R-r-a}} dt$$

$$= \left[(1-\varepsilon)r+\varepsilon R\right] \frac{2 \arctan \frac{1}{r}c\left(\varepsilon\right)\sqrt{R-r+a}}{c\left(\varepsilon\right)\sqrt{R-r+a}}.$$

Since $\arctan x < x$ for x > 0, then

(31)
$$\int_{0}^{2 \arctan V_{\epsilon}} \frac{1}{\sqrt{1 - \sigma_{\epsilon}^{2}(s)}} ds \leq \frac{2}{r} \left[(1 - \epsilon) r + \epsilon R \right] \frac{\sqrt{R - r + a}}{\sqrt{R - r - a}}.$$

Thus

(32)
$$\lim_{\varepsilon \to 0^+} \int_0^{2 \arctan V_{\varepsilon}} \frac{1}{\sqrt{1 - \sigma_{\varepsilon}^2(s)}} ds \le C = \frac{2}{r} \frac{\sqrt{R - r + a}}{\sqrt{R - r - a}}.$$

Next, we claim that

(33)
$$\lim_{\varepsilon \to 0^+} \int_{2 \arctan V_{\epsilon}}^{2\pi} \frac{1}{\sqrt{1 - \sigma_{\varepsilon}^2(s)}} ds = +\infty.$$

We have

(34)
$$\int_{2 \arctan V_{\epsilon}}^{2\pi} \frac{1}{\sqrt{1 - \sigma_{\varepsilon}^{2}(s)}} ds$$
$$= \int_{2 \arctan V_{\epsilon}}^{2\pi} \frac{(1 - \varepsilon)r + \varepsilon R}{\sqrt{R - r + a \cos t} \cdot \sqrt{(R - r - a \cos t)\varepsilon^{2} + 2r\varepsilon}} dt$$

and, furthermore,

$$((1-\varepsilon)r+\varepsilon R) \int_{2 \arctan V_{\epsilon}}^{2\pi} \frac{1}{\sqrt{R-r+a} \cdot \sqrt{(R-r+a)\varepsilon^2+2r\varepsilon}} dt$$

$$= \frac{(1-\varepsilon)r+\varepsilon R}{\sqrt{R-r+a}} \cdot \frac{2\pi-2 \arctan \frac{1}{r}\sqrt{R-r+a} \cdot c(\varepsilon)}{\sqrt{(R-r+a)\varepsilon^2+2r\varepsilon}} \longrightarrow +\infty \,,$$

when $\varepsilon \to 0$. Hence

(35)
$$\lim_{\varepsilon \to 0^+} \int_{2 \arctan V_{\epsilon}}^{2\pi} \frac{1}{\sqrt{1 - \sigma_{\varepsilon}^2(s)}} ds = +\infty.$$

Thus, we have

(36)

$$F_n\left(0^+\right) = \lim_{\varepsilon \to 0^+} F_n\left(\varepsilon\right) = -\infty$$

and

 $F_n\left(1\right) > 0.$

These conditions imply that there exists a number $\gamma \in (0, 1)$ such that

$$F_n(\gamma) = 0.$$

Thus, with Theorem 1 the proof is finished.

References

- [1] Berger, M., Geometry, I and II, Springer, Berlin, 1987.
- [2] Black, W. L., Howland, H. C., Howland, B., A theorem about zigzags between two circles, Amer. Math. Monthly 81 (1974), 754–757.
- [3] Bos, H. J. M., Kers, C., Dort, F., Raven, D. W., Poncelet's closure theorem, Expo. Math. 5 (1987), 289–364.
- [4] Cima, A., Gasull, A., Manosa, V., On Poncelet's maps, Comput. Math. Appl. 60 (2010), 1457–1464.
- [5] Cieślak, W., The Poncelet annuli, Beitr. Algebra Geom. 55 (2014), 301–309.
- [6] Cieślak, W., Martini, H., Mozgawa, W., On the rotation index of bar billiards and Poncelet's porism, Bull. Belg. Math. Soc. Simon Stevin 20 (2013), 287–300.
- [7] Lion, G., Variational aspects of Poncelet's theorem, Geom. Dedicata 52 (1994), 105– 118.
- [8] Martini, H., Recent results in elementary geometry, Part II, Symposia Gaussiana, Proc. 2nd Gauss Symposium (Munich, 1993), de Gruyter, Berlin and New York, 1995, 419–443.
- [9] Schwartz, R., The Poncelet grid, Adv. Geom. 7 (2007), 157–175.
- [10] Weisstein, E. W., Poncelet's Porism, http://mathworld. wolfram. com/Ponceletsporism.html

Waldemar Cieślak	Horst Martini
Department of Applied Mathematics	Faculty of Mathematics
Lublin University of Technology	Technical University Chemnitz
ul. Nadbystrzycka 40	09107 Chemnitz
20-618 Lublin	Germany
Poland	e-mail: martini@mathematik.tu-chemnitz.de

Witold Mozgawa Institute of Mathematics Maria Curie-Skłodowska University pl. M. Curie-Skłodowskiej 1 20-031 Lublin Poland e-mail: mozgawa@poczta.umcs.lublin.pl

Received November 6, 2013