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Special bihyperbolic numbers
and their connections

with triangular tables and matrices

Abstract. In this paper we express special bihyperbolic numbers as parade-
terminants and parapermanents of some triangular matrices. Moreover, by
applying the connections between these parameters of triangular tables and
the determinants and permanents of lower Hessenberg matrices, we obtain
another expressions of these numbers, using matrices which are not triangu-
lar.

1. Introduction. Let n ≥ 0 be an integer. The nth balancing number Bn,
Lucas-balancing number Cn, Mersenne number Mn and Mersenne–Lucas
number Hn are given by the following recursive definitions:

Bn = 6Bn−1 −Bn−2, for n ≥ 2 with B0 = 0, B1 = 1,

Cn = 6Cn−1 − Cn−2, for n ≥ 2 with C0 = 1, C1 = 3,

Mn = 3Mn−1 − 2Mn−2, for n ≥ 2 with M0 = 0, M1 = 1,

Hn = 3Hn−1 − 2Hn−2, for n ≥ 2 with H0 = 2, H1 = 3.

In Table 1 we list first numbers of sequences defined above.
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n 0 1 2 3 4 5 5 6

Bn 0 1 6 35 204 1189 6930 40391
Cn 1 3 17 99 577 3363 19601 114243
Mn 0 1 3 7 15 31 63 127
Hn 2 3 5 9 17 33 65 129

Table 1. The first terms of sequences Bn, Cn,Mn, Hn.

Balancing numbers were introduced by Behera and Panda in [2]. Later,
in [18], Panda defined Lucas-balancing numbers. These two sequences were
extensively studied, also by considering some generalizations. For more de-
tails, see for example [8, 11, 20]. The literature on Mersenne and Mersenne–
Lucas sequences is also broad, see [4, 9, 16, 22] among others.
For the integer sequences considered in this paper: balancing numbers,
Lucas-balancing numbers, Mersenne numbers and Mersenne–Lucas num-
bers, we also provide their corresponding entries in the OEIS (The On-Line
Encyclopedia of Integer Sequences):

Bn : A001109, Cn : A001541, Mn : A000225, Hn : A000051.

The hyperbolic unit j was introduced in 1848 by J. Cockle in [10]. El-
ements of the set H = {a + bj : a, b ∈ R, j2 = 1, j ̸= ±1} are known
as hyperbolic numbers. The hyperbolic numbers, which are known also as
split complex numbers or double numbers were studied for the first time in
the 19th century. Originally, the non-Euclidean framework was described by
Yaglom [23], while a systematic modern treatment of hypercomplex systems
was given by Olariu [17] and by Kantor and Solodovnikov [15]. Fundamental
algebraic properties of hyperbolic numbers were studied in detail by Rochon
and Shapiro [21].
One of the generalizations of hyperbolic numbers was introduced in [19].
Let us denote by H2 the set of all numbers of the form

ζ = x0 + j1x1 + j2x2 + j3x3,

where x0, x1, x2, x3 ∈ R and operators j1, j2, j3 /∈ R satisfy conditions

j21 = j22 = j23 = 1, j1j2 = j2j1 = j3, j1j3 = j3j1 = j2, j2j3 = j3j2 = j1.

The elements of the set H2 are called bihyperbolic numbers.
Addition and multiplication of bihyperbolic numbers are performed anal-
ogously to algebraic expressions. These operations are associative and com-
mutative on H2. Moreover, multiplication is distributive over addition, so
(H2,+, ·) is a commutative ring.
Bihyperbolic numbers are well known in the literature, their properties
can be found for example in [3, 21]. Recently, bihyperbolic extensions of
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classical integer sequences have also been investigated; see, for example, the
bihyperbolic Tribonacci-type sequences introduced in [14].
Some special cases of bihyperbolic numbers were studied in the literature.
In particular, in [7], authors defined bihyperbolic numbers of the Fibonacci
type. Later, following this research, other types of bihyperbolic numbers
were introduced and we will focus on four of them:

• bihyperbolic balancing numbers and bihyperbolic Lucas-balancing
numbers defined in [6],

• bihyperbolic Mersenne numbers and bihyperbolic Mersenne–Lucas
numbers defined in [5].

Let n ≥ 0 be an integer. The nth bihyperbolic balancing number BhBn,
bihyperbolic Lucas-balancing number BhCn, bihyperbolic Mersenne num-
ber BhMn and bihyperbolic Mersenne–Lucas number BhHn are defined in
the following way:

BhBn = Bn + j1Bn+1 + j2Bn+2 + j3Bn+3,(1)

BhCn = Cn + j1Cn+1 + j2Cn+2 + j3Cn+3,(2)

BhMn = Mn + j1Mn+1 + j2Mn+2 + j3Mn+3,(3)

BhHn = Hn + j1Hn+1 + j2Hn+2 + j3Hn+3,(4)

where Bn is the nth balancing number, Cn is the nth Lucas-balancing num-
ber, Mn is the nth Mersenne number and Hn is the nth Mersenne–Lucas
number.
Below we list first four terms of each sequence mentioned above.

BhB0 = j1 + 6j2 + 35j3,

BhB1 = 1 + 6j1 + 35j2 + 204j3,

BhB2 = 6 + 35j1 + 204j2 + 1189j3,

BhB3 = 35 + 204j1 + 1189j2 + 6930j3,

...

(5)

BhC0 = 1 + 3j1 + 17j2 + 99j3,

BhC1 = 3 + 17j1 + 99j2 + 577j3,

BhC2 = 17 + 99j1 + 577j2 + 3363j3,

BhC3 = 99 + 577j1 + 3363j2 + 19601j3,

...

(6)
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BhM0 = j1 + 3j2 + 7j3,

BhM1 = 1 + 3j1 + 7j2 + 15j3,

BhM2 = 3 + 7j1 + 15j2 + 31j3,

BhM3 = 7 + 15j1 + 31j2 + 63j3,

...

(7)

BhH0 = 2 + 3j1 + 5j2 + 9j3,

BhH1 = 3 + 5j1 + 9j2 + 17j3,

BhH2 = 5 + 9j1 + 17j2 + 33j3,

BhH3 = 9 + 17j1 + 33j2 + 65j3,

...

(8)

The following recurrence relations concerning the numbers BhBn, BhCn,
BhMn, BhHn were proved in [5, 6].

Theorem 1.1 ([6]). Let n ≥ 2 be an integer. Then
(i) BhBn = 6BhBn−1 −BhBn−2,
(ii) BhCn = 6BhCn−1 −BhCn−2,

where BhB0, BhB1, BhC0, BhC1 are given by (5), (6), respectively.

Theorem 1.2 ([5]). Let n ≥ 2 be an integer. Then
(i) BhMn = 3BhMn−1 − 2BhMn−2,
(ii) BhHn = 3BhHn−1 − 2BhHn−2,

where BhM0, BhM1, BhH0, BhH1 are given by (7), (8), respectively.

For details concerning numbers BhBn, BhCn, BhMn, BhHn, including,
among others, results about generating function and Binet’s formulas see
[5, 6].
In [1], Bednarz and Szynal-Liana proved relations between bihyperbolic
numbers of the Fibonacci type and parameters of some special types of tri-
angular tables and matrices. Following their research, in this paper we will
express bihyperbolic numbers defined by formulas (1)–(4) as paradetermi-
nants and parapermanents of triangular matrices and as determinants and
permanents of matrices. Before we do it, let us remind some facts about
triangular matrices, paradeterminants and parapermanents.

2. Triangular matrices, paradeterminants and parapermanents.
An array of numbers from some field K of the form

An =


a11
a21 a22
...

...
. . .

an−1,1 an−1,2 · · · an−1,n−1

an1 an2 · · · an,n−1 ann


n×n
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is known as a triangular matrix of order n.
It is important to acknowledge (see [24]) that a triangular matrix defined
above is not a matrix in the classical sense since it is not a rectangular table
of numbers.
Triangular matrices and special parameters connected with them, specif-
ically paradeterminants and parapermanents, are used in many branches of
mathematics, see for example [13, 27]. For more information concerning tri-
angular matrices, see [12, 25, 26, 24]. We will cite the most essential results,
which are related to this paper.
In [12], the following formulas were given. Let An be a triangular matrix
and by {aij} let us denote the following expression

{aij} =
i∏

k=j

aik.

Then the paradeterminant ddet(An) and parapermanent pper(An) of An

are

ddet(An) =
n∑

r=1

∑
p1+···+pr=n

(−1)n−r
r∏

s=1

{ap1+···+ps,p1+···+ps−1+1}

and

pper(An) =
n∑

r=1

∑
p1+···+pr=n

r∏
s=1

{ap1+···+ps,p1+···+ps−1+1},

respectively, where summations are over the set of positive integer solutions
of the equality p1 + · · ·+ pr = n.
For n ≥ 1 we can decompose the paradeterminant and the parapermanent
by elements of the last row in the following way (see [12, 24]):

(9) ddet(An) =

n∑
s=1

(−1)n−s{ans}ddet(As−1),

(10) pper(An) =
n∑

s=1

{ans} pper(As−1),

where ddet(A0) = 1, pper(A0) = 1.
In [28], Zatorsky and Lishchynskyy proved a relation between a parade-
terminant of a triangular matrix and a determinant of a special classical
matrix, which is almost triangular, known as lower Hessenberg matrix. This
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is the following relation:

ddet(An) = det



{a11} 1 0 · · · 0 0
{a21} {a22} 1 · · · 0 0
{a31} {a32} {a33} · · · 0 0
...

...
...

. . .
...

...
{an−1,1} {an−1,2} {an−1,3} · · · {an−1,n−1} 1
{an1} {an2} {an3} · · · {an,n−1} {ann}


.(11)

Moreover, there exists a similar connection between parapermanent of a
triangular matrix and a permanent of a lower Hessenberg matrix:

pper(An) = per



{a11} 1 0 · · · 0 0
{a21} {a22} 1 · · · 0 0
{a31} {a32} {a33} · · · 0 0
...

...
...

. . .
...

...
{an−1,1} {an−1,2} {an−1,3} · · · {an−1,n−1} 1
{an1} {an2} {an3} · · · {an,n−1} {ann}


.(12)

3. Main results. We are ready to present our results concerning non-
trivial connections between special bihyperbolic sequences described in the
introduction and paradeterminants of triangular matrices.

Theorem 3.1. Let n ≥ 0 be an integer and let

An+1 =



j1 + 6j2 + 35j3
−1

6 + 1
6j2 + j3 6
0 1

6 6
0 0 1

6 6
...

...
. . . . . . . . .

0 0 0 0 1
6 6


(n+1)×(n+1)

.

Then BhBn = ddet(An+1).

Proof. (By induction with respect to n.)
If n = 0, then ddet(A1) = j1 + 6j2 + 35j3 = BhB0.
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If n = 1, then

ddet(A2) =
2∑

s=1

(−1)2−s{a2s} ddet(As−1)

= (−1)1 · {a21} ddet(A0) + (−1)0 · {a22} ddet(A1)

= (−1) ·
2∏

k=1

a2k · ddet(A0) + 1 ·
2∏

k=2

a2k · ddet(A1)

= (−1) · a21 · a22 · ddet(A0) + 1 · a22 · ddet(A1)

= (−1) ·
(
−1

6
+

1

6
j2 + j3

)
· 6 · 1 + 1 · 6 · (j1 + 6j2 + 35j3)

= 1− j2 − 6j3 + 6j1 + 36j2 + 210j3

= 1 + 6j1 + 35j2 + 204j3 = BhB1.

Let us assume that for some integer n ≥ 0 we have BhBn = ddet(An+1)
and BhBn+1 = ddet(An+2). We will show, that this assumption implies
BhBn+2 = ddet(An+3). Using the formula (9), we obtain

ddet(An+3) =

n+3∑
s=1

(−1)n+3−s{an+3,s} ddet(As−1)

= (−1)n+3−1 · {an+3,1} ddet(A1−1)

+ . . .+ (−1)n+3−(n+1) · {an+3,n+1}ddet(An+1−1)

+ (−1)n+3−(n+2) · {an+3,n+2} ddet(An+2−1)

+ (−1)n+3−(n+3) · {an+3,n+3} ddet(An+3−1)

= (−1)n+2 · an+3,1 · an+3,2 · . . . · an+3,n+3 · ddet(A0)

+ . . .+ 1 · an+3,n+1 · an+3,n+2 · . . . · an+3,n+3 · ddet(An)

+ (−1) · an+3,n+2 · an+3,n+3 · ddet(An+1)

+ 1 · an+3,n+3 · ddet(An+2)

= 0 + . . .+ 0 + (−1) · 1
6
· 6 · ddet(An+1) + 1 · 6 · ddet(An+2)

= −ddet(An+1) + 6 ddet(An+2)

= −BhBn + 6BhBn+1 = BhBn+2,

which ends the proof. □

By similar calculations we can prove analogous results for expressing
BhCn, BhMn, BhHn as paradeterminants.
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Theorem 3.2. Let n ≥ 0 be an integer and let

An+1 =



1 + 3j1 + 17j2 + 99j3
1
2 + 1

6j1 +
1
2j2 +

17
6 j3 6

0 1
6 6

0 0 1
6 6

...
...
. . . . . . . . .

0 0 0 0 1
6 6


(n+1)×(n+1)

.

Then BhCn = ddet(An+1).

Theorem 3.3. Let n ≥ 0 be an integer an let

An+1 =



j1 + 3j2 + 7j3
−1

3 + 2
3j2 + 2j3 3
0 2

3 3
0 0 2

3 3
...

...
. . . . . . . . .

0 0 0 0 2
3 3


(n+1)×(n+1)

.

Then BhMn = ddet(An+1).

Theorem 3.4. Let n ≥ 0 be an integer and let

An+1 =



2 + 3j1 + 5j2 + 9j3
1 + 4

3j1 + 2j2 +
10
3 j3 3

0 2
3 3

0 0 2
3 3

...
...
. . . . . . . . .

0 0 0 0 2
3 3


(n+1)×(n+1)

.

Then BhHn = ddet(An+1).

Now we show that the same numbers can be also expressed as paraper-
manents of triangular matrices. We begin the cycle of these theorems with
the proof for the numbers BhMn and the next Theorems 3.6–3.8 can be
proved analogously.

Theorem 3.5. Let n ≥ 0 be an integer and let

An+1 =



j1 + 3j2 + 7j3
1
3 − 2

3j2 − 2j3 3
0 −2

3 3
0 0 −2

3 3
...

...
. . . . . . . . .

0 0 0 0 −2
3 3


(n+1)×(n+1)

.

Then BhMn = pper(An+1).
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Proof. (By induction with respect to n.)
If n = 0, then pper(A1) = j1 + 3j2 + 7j3 = BhM0.
If n = 1, then

pper(A2) =

2∑
s=1

{a2s} pper(As−1) = {a21} pper(A0) + {a22} pper(A1)

=

2∏
k=1

a2k · pper(A0) +

2∏
k=2

a2k · pper(A1)

= a21 · a22 · pper(A0) + a22 · pper(A1)

=

(
1

3
− 2

3
j2 − 2j3

)
· 3 · 1 + 3 · (j1 + 3j2 + 7j3)

= 1− 2j2 − 6j3 + 3j1 + 9j2 + 21j3

= 1 + 3j1 + 7j2 + 15j3 = BhM1.

Let us assume that for some integer n ≥ 0 we have BhMn = pper(An+1)
and BhMn+1 = pper(An+2). We will show, that this assumption implies
BhMn+2 = pper(An+3). Applying the formula (10), we get

pper(An+3) =

n+3∑
s=1

{an+3,s} pper(As−1)

= {an+3,1} pper(A1−1) + . . .+ {an+3,n+1}pper(An+1−1)

+ {an+3,n+2} pper(An+2−1) + {an+3,n+3}pper(An+3−1)

= an+3,1 · an+3,2 · . . . · an+3,n+3 · pper(A0)

+ . . .+ an+3,n+1 · an+3,n+2 · . . . · an+3,n+3 · pper(An)

+ an+3,n+2 · an+3,n+3 · pper(An+1) + an+3,n+3 · pper(An+2)

= 0 + . . . 0 +

(
−2

3

)
· 3 · pper(An+1) + 3 · pper(An+2)

= −2 pper(An+1) + 3 pper(An+2)

= −2BhMn + 3BhMn+1 = BhMn+2,

which end the proof. □

Theorem 3.6. Let n ≥ 0 be an integer and let

An+1 =



j1 + 6j2 + 35j3
1
6 − 1

6j2 − j3 6
0 −1

6 6
0 0 −1

6 6
...

...
. . . . . . . . .

0 0 0 0 −1
6 6


(n+1)×(n+1)

.

Then BhBn = pper(An+1).
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Theorem 3.7. Let n ≥ 0 be an integer and let

An+1 =



1 + 3j1 + 17j2 + 99j3
−1

2 − 1
6j1 −

1
2j2 −

17
6 j3 6

0 −1
6 6

0 0 −1
6 6

...
...
. . . . . . . . .

0 0 0 0 −1
6 6


(n+1)×(n+1)

.

Then BhCn = pper(An+1).

Theorem 3.8. Let n ≥ 0 be an integer and let

An+1 =



2 + 3j1 + 5j2 + 9j3
−1− 4

3j1 − 2j2 − 10
3 j3 3

0 −2
3 3

0 0 −2
3 3

...
...
. . . . . . . . .

0 0 0 0 −2
3 3


(n+1)×(n+1)

.

Then BhHn = pper(An+1).

By formulas (11) and (12), using Theorems 3.1–3.8, we can directly obtain
corollaries, which express terms of sequences (1)–(4) as determinants and
permanents of classical matrices, being lower Hessenberg matrices.

Corollary 3.9. Let n ≥ 0 be an integer. Then

BhBn = det



j1 + 6j2 + 35j3 1 0 · · · 0 0
−1 + j2 + 6j3 6 1 · · · 0 0

0 1 6 · · · 0 0
...

...
. . . . . .

...
...

0 0 · · · 1 6 1
0 0 0 · · · 1 6


(n+1)×(n+1)

,

BhCn = det



1 + 3j1 + 17j2 + 99j3 1 0 · · · 0 0
3 + j1 + 3j2 + 17j3 6 1 · · · 0 0

0 1 6 · · · 0 0
...

...
. . . . . .

...
...

0 0 · · · 1 6 1
0 0 0 · · · 1 6


(n+1)×(n+1)

,
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BhMn = det



j1 + 3j2 + 7j3 1 0 0 0 0
−1 + 2j2 + 6j3 3 1 0 0 0

0 2 3 1 0 0
0 0 2 3 1 0
...

...
. . . . . . . . .

...
0 0 0 0 2 3


(n+1)×(n+1)

,

BhHn = det



2 + 3j1 + 5j2 + 9j3 1 0 0 0 0
3 + 4j1 + 6j2 + 10j3 3 1 0 0 0

0 2 3 1 0 0
0 0 2 3 1 0
...

...
. . . . . . . . .

...
0 0 0 0 2 3


(n+1)×(n+1)

.

Corollary 3.10. Let n ≥ 0 be an integer. Then

BhBn = per



j1 + 6j2 + 35j3 1 0 · · · 0 0
1− j2 − 6j3 6 1 · · · 0 0

0 −1 6 · · · 0 0
...

...
. . . . . .

...
...

0 0 · · · −1 6 1
0 0 0 · · · −1 6


(n+1)×(n+1)

,

BhCn = per



1 + 3j1 + 17j2 + 99j3 1 0 · · · 0 0
−3− j1 − 3j2 − 17j3 6 1 · · · 0 0

0 −1 6 · · · 0 0
...

...
. . . . . .

...
...

0 0 · · · −1 6 1
0 0 0 · · · −1 6


(n+1)×(n+1)

,

BhMn = per



j1 + 3j2 + 7j3 1 0 0 0 0
1− 2j2 − 6j3 3 1 0 0 0

0 −2 3 1 0 0
0 0 −2 3 1 0
...

...
. . . . . . . . .

...
0 0 0 0 −2 3


(n+1)×(n+1)

,

BhHn = per



2 + 3j1 + 5j2 + 9j3 1 0 0 0 0
−3− 4j1 − 6j2 − 10j3 3 1 0 0 0

0 −2 3 1 0 0
0 0 −2 3 1 0
...

...
. . . . . . . . .

...
0 0 0 0 −2 3


(n+1)×(n+1)

.
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4. Examples. In this subsection we show how Corollary 3.10 and Theo-
rem 3.1 work in specific cases, namely we express the number BhM3 as a
permanent of a matrix and the number BhB3 as a paradeterminant of a
triangular matrix. In both cases, the permanent and the paradeterminant
are decomposed by elements of the last row.

per


j1 + 3j2 + 7j3 1 0 0
1− 2j2 − 6j3 3 1 0

0 −2 3 1
0 0 −2 3


4×4

= 0 · per

 1 0 0
3 1 0
−2 3 1


3×3

+ 0 · per

j1 + 3j2 + 7j3 0 0
1− 2j2 − 6j3 1 0

0 3 1


3×3

= (−2) · per

j1 + 3j2 + 7j3 1 0
1− 2j2 − 6j3 3 0

0 −2 1


3×3

+ 3 · per

j1 + 3j2 + 7j3 1 0
1− 2j2 − 6j3 3 1

0 −2 3


3×3

= (−2) · ((j1 + 3j2 + 7j3) · 3 + (1− 2j2 − 6j3))

+ 3 · ((j1 + 3j2 + 7j3) · 9− 2 · (j1 + 3j2 + 7j3) + 3 · (1− 2j2 − 6j3))

= (−2) · (1 + 3j1 + 7j2 + 15j3) + 3 · (3 + 7j1 + 15j2 + 31j3)

= 7 + 15j1 + 31j2 + 63j3 = BhM3.

ddet


j1 + 6j2 + 35j3
−1

6 + 1
6j2 + j3 6
0 1

6 6
0 0 1

6 6


4×4

= (−1)3 ·
(
0 · 0 · 1

6
· 6
)
· 1 + (−1)2 ·

(
0 · 1

6
· 6

)
· ddet

[
j1 + 6j2 + 35j3

]
1×1

+ (−1)1 ·
(
1

6
· 6
)
· ddet

[
j1 + 6j2 + 35j3
−1

6 + 1
6j2 + j3 6

]
2×2

+ (−1)0 · 6 · ddet

j1 + 6j2 + 35j3
−1

6 + 1
6j2 + j3 6
0 1

6 6


3×3

= 0 + 0− ddet

[
j1 + 6j2 + 35j3
−1

6 + 1
6j2 + j3 6

]
2×2

+ 6 · ddet

j1 + 6j2 + 35j3
−1

6 + 1
6j2 + j3 6
0 1

6 6


3×3

= −ddet

[
j1 + 6j2 + 35j3
−1

6 + 1
6j2 + j3 6

]
2×2

+ 6·(−1)1 ·
(
1

6
·6
)
·ddet

[
j1+6j2+35j3

]
1×1

+ 6 · (−1)0 · 6 · ddet
[
j1 + 6j2 + 35j3
−1

6 + 1
6j2 + j3 6

]
2×2
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= 35 · ddet
[
j1 + 6j2 + 35j3
−1

6 + 1
6j2 + j3 6

]
2×2

− 6 · ddet
[
j1 + 6j2 + 35j3

]
1×1

= 35 ·
(
(−1)1 ·

(
−1

6
+
1

6
j2+j3

)
· 6 · 1+(−1)0 · 6 · ddet

[
j1+6j2+35j3

]
1×1

)
+
(
−6 · ddet

[
j1 + 6j2 + 35j3

]
1×1

)
= 35 · (1− j2 − 6j3) + 204 · ddet

[
j1 + 6j2 + 35j3

]
1×1

= 35− 35j2 − 210j3 + 204 · (j1 + 6j2 + 35j3)

= 35 + 204j1 + 1189j2 + 6930j3

= BhB3.

5. Conclusions. In our paper we have considered special bihyperbolic
numbers given by linear recurrence of the second order. We have shown
that these numbers can be expressed as certain parameters of specific trian-
gular tables or matrices. The obtained results may be a starting point
for the search of further relations between matrix theory and bihyper-
bolic numbers defined by linear or nonlinear recurrence equations of order
k ≥ 3, for example the well-known Padovan recurrence given by the formula
P (n) = P (n− 2) + P (n− 3), where P (0) = P (1) = P (2) = 1.
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