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A simple spatial model of population dynamics

ABSTRACT. A mathematical model is presented that describes the dynamics
of a spatially distributed population, incorporating the effects of external
migration. The evolution of the population density is governed by a simple
integro-differential equation. In the spatially homogeneous case, the model is
reduced to the classical logistic equation with an additional constant term and
its behavior is fully characterized. In the inhomogeneous case, the dynamics
is examined through numerical simulations and typical long-term behavior is
illustrated.

1. Introduction. The dynamics of population growth has been a subject
of scientific research for centuries. Modeling efforts perhaps began with the
famous Fibonacci model, which represents a simplified case of unbounded
population growth. These efforts were continued much later with the well-
known works of the late 18th and 19th centuries by Thomas Malthus [5],
Benjamin Gompertz [1] and Pierre Verhulst [7], as well as such 20th century
researchers as Vito Volterra [8]. This research continues to this day, with
increasingly advanced models being developed, often incorporating sophis-
ticated mathematical methods.

This work aims to present a model of population dynamics that is rela-
tively simple, yet quite general. It can potentially be used to study a variety
of phenomena, such as the impact of migration on population growth or the
expansion of population into a new environment.
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2. The model. A fundamental characteristic of the model described in
this work is the existence of two conceptual layers influencing the popula-
tion dynamics. The main layer, which is explicitly included in the model,
represents the segment of the population under study. Its state is described
by a density function p : R* — R, which is generally assumed to be bounded.
The argument of the density function is referred to as location, one possi-
ble interpretation of which is spatial position. The outer layer, in contrast,
corresponds to the portion of the population that lies outside the scope of
the study and is not modeled directly.

For example, consider studying the dynamics of a population within a
given city. The city’s population constitutes the main layer — it is the
subject of the research, and its dynamics is explicitly modeled. The outer
layer, in this case, could be the population of the surrounding region, the
country, or even the entire world. Its influence is crucial, but its state is not
tracked or modeled.

Interactions within the main layer are modeled separately from interac-
tions between the main and outer layers. The influence of internal interac-
tions is represented by a™ for positive effects (for example fertility) and a~
for negative effects (like competition). The influence of the outer layer on
the main layer is captured by b™ (positive) and b~ (negative), see Figure 1
for a schematic representation. Any interactions within the outer layer are
ignored, as this layer is not directly included in the model.

OUTER LAYER

N—

MAIN LAYER

FIGURE 1. Scheme of interactions included in the model:

at and @~ model the influence of interactions within the

main layer, while b™ and b~ the influence of interactions
between main and outer layers.

The dynamics of the system is described by a map ¢t — o, where ¢t > 0
denotes the time variable and g; represents population density at time t.
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As is customary, this mapping corresponds to the solution of a differential
equation, which, in the case of the model under consideration, takes the
following form:

Sle) =57 @) + [ ot =ty

(2.1)
- [b(z) +/a(x—y)gt(y)dy ot(x),

where a™, a~, bT and b~ are suitable functions that serve as parameters of
the model. Mathematical assumptions imposed on these functions, as well
as on the densities g¢, depend on the object of study. In general, all of them
are assumed to be non-negative. Additionally, a™ and @~ are assumed to
be integrable, while b™ and b~ to be bounded.

The parameter function b* describes the influx of new members into the
studied population. It is assumed to be independent of the state of the pop-
ulation. In the simplest case, it can also be independent of the coordinate x
in the inner layer, although the model allows for location dependence. The
function b~ describes the outflux of population members, which may include
emigration and/or mortality. In the case of mortality, members of popula-
tion are not transferred to the outer layer but are simply removed from the
main layer. Since the state of the outer layer is not tracked, mortality can be
incorporated into the outflux described by b~. This approach might resem-
ble the classical SIR epidemiological model [3] in which the “recovered” (R)
compartment can also include deceased members of the population. In the
model under consideration, the outflux of population members is assumed
to be proportional to the population density.

The influence of the parameter functions a™ and a~ depends significantly
on the state of the model. The function a™ can be interpreted as a fertility
kernel. The larger its total mass (a*) = [ a™(z)dz, the greater the potential
increase in population density it induces. However, this effect also strongly
depends on the shape of a* and the profile of the population density o.
Typically, a™ is a symmetric function concentrated around zero. Then the
increase at coordinate x is stimulated by the state of the population near x.

The function a~ can be interpreted as a competition kernel. Its influence
on the population at a given location x is negative and proportional to
the population density at x, similarly to b~—. However, unlike b~, it also
depends on the global state of the system in a manner analogous to a™.
In general, the greater the total mass (a~) = [a~(z)dz, the stronger this
influence. Still, the effect it highly sensitive to the specific shape of ¢~ and
the profile of the population density. As with a™, kernel a~ is typically
a symmetric function concentrated around zero, meaning that population
growth is influenced — both positively and negatively — by the surrounding
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population. By choosing specific forms of the functions a* and a~, one can
investigate a wide range of interaction scenarios.

A key assumption of the model, stemming from the form of equation
(2.1), is that the influence of a™ and a~ depends on location only indirectly
— through the state of the system, that is the population density. On the
other hand, the model allows for location-dependent influence on population
growth through the functions b and b~. To keep the model simple, all
the interactions described above are not directly time-dependent. However,
with the exception of b*, they exhibit time dependence indirectly through
the evolving state of the system.

As mentioned earlier, the states of the system are described by functions
0: R — R. One possible interpretations of such densities is probabilistic in
nature. Specifically, the expected number of individuals in a cube A C R%,
is given by [, o(x)dz. For a more detailed discussion, see [4], where a
connection with the corresponding microscopic model is established.

3. Homogeneous case. The differential equation (2.1) introduced in the
previous section, appears too complex to admit a general analytical solu-
tion. Even establishing its well-posedness is a nontrivial task. Therefore,
to analyze the behavior of the system, it is necessary to restrict the param-
eter functions to specific forms and possibly employ numerical methods to
obtain approximate solutions.

In the simplest case, one would assume that the initial density og, as well
as functions b™ and b~, are constant, that is go(z) = ro,b"(z) = T and
b~=(z) = B~ for each x € R? and some nonnegative real 79, T and 5.
Then, the density of population g; remains homogeneous, that is g;(x) = 1
for each = € R? and some nonnegative real r;. In such a homogeneous case,
in order to predict the behavior of the system, it is enough to solve the
following simple Riccati type ODE with constant coefficients:

{C}im = B% + ({at) = B )re — (a2,

Tt=0 = To0,

(3.1)

where (a*) = [ a®(z)dz denotes the total mass of respectively a* and a~.
Assuming that (a~) > 0, by substituting r = ﬁ, equation (3.1) can
be reduced to a second-order linear homogeneous ODE of the form

(3.2) 2"+ (87 —{a™))2’ — pt{a" )z =0.

With additional assumption (at) # 8~ or 81 > 0, characteristic polyno-
mial of (3.2) has two distinct roots

(33) "= ()~ 5 +6) with 6= /{(a¥) — F)E+ 45 ),
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so (3.2) has the general solution

x(t) = CreP 4 Coel .
Substituting this result back into (3.1), we obtain
pre?” + Cpet?”
(a=)(etr" + Cetr™)

with C' = g—f Taking into account the initial condition of (3.1), we get

Tt =

rH(rg —r7) 4+ (rt —rg)r—e %
ro—r~ + (rt —rg)e=%

for r* = % and p*, § as in (3.3).

From (3.4), it is clear that in the analyzed case, the system stabilizes over
time, with 7; tending to r™ as t — oo. Exemplary solutions are presented in
Figure 2. In the left panel, the parameters of the system satisfy (a™) = 2,
BT =4, and (aT) — B~ = 2. Trajectory rt(l) corresponds to the initial
condition 7“(()1) = 1, while 7“£2) corresponds to the initial condition T(()Q) =
2.5. Both trajectories approach the value r™ = 2. In the right panel, the
parameters satisfy (a7) = 2, 7 = 6 and (a™) — 87 = —1, with initial

3)

conditions 7, = 0 and r(()4) = 2.5, respectively. In this scenario, both
trajectories converge to r+ = 1.5.

(3.4) T =
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FIGURE 2. Solutions (3.4) of (3.1): r; versus t for selected
parameters and initial conditions

Another example of the solution given by (3.4) is shown in Figure 3. In
this case, the parameter 317 = 0.01 is relatively small compared to the other
parameters, which are (a~) =1 and (at) — 3~ = 5. The initial conditions
are set to r(()5) =0 and r(()G) = 6. The trajectory r§5) resembles an S-shaped
curve, characteristic of logistic growth.

This similarity is not coincidental — first line of equation (3.1) can be
rewritten as

d o Tt +
(3.5) Zre=kr(1-22) + 6
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with k = ((a*) — §7) and K = {250
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FIGURE 3. Solutions (3.4) of (3.1): 7 versus t for small
parameter B

Therefore, the equation (3.1) can be considered as a modified logistic (or
Verhulst) model, compare with e.g. Chapter 1.5 of [2], with an additional
term BT representing external influx into the population. When this influx
is relatively small, it has little impact on the overall population dynamics
— except in the case of a very low initial population. This effect is clearly
illustrated in Figure 3 by trajectory rt(S), where the population begins to
grow despite being initially absent. Such behavior would be impossible in
the classical logistic model.

Recall that in the logistic model, the asymptotic population size — equal
to the environment’s carrying capacity — is precisely the parameter K as in
(3.5). In the studied model

o fah -6
(a™)
and it still can be interpreted as the environment’s carrying capacity. How-
ever, the asymptotic population size is modified due to the appearance of
the term A7 and is given by

Jim ry =1 = o ((0) = 5+ V) =B P+ 45 a) ).

Since both 81 and (a™) are nonnegative, it is clear that r* > K and r* ~ K
for sufficiently small values of 5. The above inequality can be interpreted
as follows: due to the constant external influx into the population, its as-
ymptotic size exceeds the environment’s carrying capacity.

At this point, it is important to recall that the actual object of study is
not the model given by ODE (3.1) but rather the one described by (2.1).
Therefore, visualizing the evolution of states requires more than showing
the time dynamics of a single real variable as in Figures 2 and 3. The
states of the system are functions g; : R* — R. Even in the case d = 1, a
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more appropriate approach is to plot g;(z) versus x at selected time points.
An example of such presentation is shown in Figure 4 which illustrates the
evolution of states g; corresponding to values r§5) previously depicted in
Figure 3. One can observe from the plot in Figure 4 that the initial density
was close to zero and then it slowly increase. The rate of this increase
accelerated between t = 1 and ¢t = 2 and then slowed down as the density
approached its asymptotic value. While this form of presentation is clearly
less informative in the homogeneous case, it may be the only viable option
in the more general setting, where either the initial population density or
the parameter functions b™ and b~ are not constant.
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FI1GURE 4. Evolution of population density in the
homogeneous one-dimensional system: g;(x) versus z for
selected values of ¢

4. Numerical simulations. As mentioned in previous sections, equation
(2.1) is generally too complex to be solved analytically. Therefore, to in-
vestigate the system’s behavior, numerical methods may be employed to
approximate the evolution of its states. In this section, the selected results
obtained through this approach are presented. For the sake of clarity in the
presentation, as well as to make numerical calculations faster, within this
section the spatial dimension is restricted to d = 1. Even with such a restric-
tion, it must be acknowledged that an accurate simulation of the evolution
of states may be infeasible if the initial density gy or parameter functions
a® and b are too complex. Nonetheless, there exist several scenarios in
which such simulations can be reliably carried out.

The principal challenges that hinder numerical simulation and must be
addressed are the continuity and unboundedness of both time and space. A
standard approach to mitigating continuity issues, involves time and space
discretization. For a more detailed discussion in a similar setting, see [6].
Rather than analyzing the evolution of original system, one considers a
discrete analogue, in which the spatial domain R? is replaced by a suit-
ably dense lattice A and continuous time is approximated by a sequence of
discrete time steps. Consequently, system states, originally represented as
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functions g; : R? — R, are replaced by sequences of values defined on A.
Provided the discretization is sufficiently fine, the discrete system typically
exhibits behavior that approximates that of the original system, at least in
cases involving regular initial densities and parameter functions.

The unboundedness of time and space presents a more significant chal-
lenge. In particular, numerical methods are generally not very well suited
for analyzing the long-time behavior of systems, as errors tend to accumu-
late progressively over time. These errors arise both from the discretization
process itself and from numerical inaccuracies inherent in the computations
performed. Nevertheless, in many cases, the general behavior of the system
is preserved even over extended simulation times, particularly when the sys-
tem tends toward a stationary state. A similar approach can be applied to
address spatial unboundedness. If, over the time interval under considera-
tion, the system’s evolution is effectively confined to a bounded region of
space, the remainder of the infinite domain may be disregarded. In such
cases, it is sufficient to restrict the simulation to this bounded subdomain
— referred to as the numerical domain — while still capturing the essential
dynamics of the system. If necessary, the numerical domain may be dynam-
ically extended during the course of the simulation. This approach is valid
only when the initial condition and the parameter functions are integrable.
In the case of infinite systems — where the density functions are bounded
but not integrable — it is generally not applicable and a suitable numerical
treatment remains unclear. However, certain special cases permit reliable
simulation. One such case is a periodic system. Specifically, if the initial
condition g, along with the parameter functions b and b~, are periodic
with a common period p, then the population density p; remains periodic
with the same period p for all ¢ > 0. It allows the numerical domain to
be restricted to a single spatial window of size corresponding to the period
p, while preserving the full dynamics of the system. Spatially periodic sys-
tems are more easily simulated than finite systems, as the numerical domain
remains invariant over time.

The system can exhibit a wide range of behaviors due to the multitude of
possible initial density profiles and parameter functions. As it is not possible
to explore all such possibilities, we focus here on several simple scenarios
for spatially periodic systems that serve as illustrative examples of typical
system dynamics. These scenarios demonstrate relatively rapid convergence
to stationary states, resembling the behavior of the homogeneous system
described in the previous section.

To maintain a concise description, we first introduce some notions that
will be used in both scenarios. Let Gauss(c,r), or briefly, G(c,r) denote a
Gaussian function defined by

C IL’2
Glzie,r) = -2 ).
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For a given period p define Gauss(c, , s), or briefly G, (c, , s), as a p-periodic
infinite sum of shifted Gaussians

Gp(z;c,r,s) = Z G(x — s+ np;c,r).
nez

First, we consider a periodic system with period p = 20. The parameter
functions of the model are defined as follows: a® = G(1,1), bT = G,(10,5,5)
and b~ = G,(10,5,—5). This selection implies that interactions related to
fertility and competition are mostly short-ranged. Moreover, population
influx is greater in regions around = = 5+ 20n, while population outflux (or
mortality) is higher in regions around x = —5 + 20n.

Consider the initial density to be specified by the function G,(20,5,5),
which exhibits a shape resembling a sinusoidal wave with local maxima
located at x = 5 4 20n and local minima at x = —5 + 20n for every n € Z.
The approximated evolution of this system inside the numerical domain is
presented in Figure 5 (left panel), where the population density is plotted
at selected time points. The initial density and the density at the final
simulation time ¢ = 20 are indicated by thicker lines.

a+: Gauss(1, 1) a-: Gauss(1, 1) a+:Gauss(1, 1) a-: Gauss(l, 1)
b+ : Gauss(10, 5, 5) b-: Gauss(10, 5, -5) b+ : Gauss(10, 5, 5) b-: Gauss(10, 5, -5)
IC : Gauss(20, 5, 5) IC : Gauss(20, 5, -5)
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FIGURE 5. Approximated solutions of (2.1) in the first two
scenarios: g¢(z) versus x for selected values of ¢

The initial population density is specified by the function G,(20,5, —5),
which has a shape resembling a sinusoidal wave. It has local maxima at
x = —5 4 20n and local minima at x = 5+ 20n for every n € Z. Over time,
the initial spatial heterogeneity of the population is preserved, though to a
lesser extent. Initially, the population density decreases at the maxima and
increases at minima, but this trend gradually slows down, suggesting that
system is approaching a stable state — the density profiles at ¢t = 5,10, 15,20
already visually overlap.

In the case of dynamics shown in the right panel of Figure 5, we consider a
different initial density, defined by G,(20,5,—5). This is the same function
as in the previous case, but shifted so that the positions of its minima and
maxima are interchanged. Despite the significant difference in the initial
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density, the system appears to approach the same stable state at a similar
rate as before.

a+:Gauss(1, 1) a-:Gauss(1, 1) a+: Gauss(1, 1) a-: Gauss(1, 1)
b+ : Gauss(10, 1, 5) b- : Gauss(10, 1, -5) b+ : Gauss(10, 1, 5) b-: Gauss(10, 1, -5)
IC : Indicator(20, 10) IC : Gauss(20, 5, 0)
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FIGURE 6. Approximated solutions of (2.1) in the case of
sharper parameters b* for two distinct initial conditions:
ot(x) versus z for selected values of ¢

In the next scenario, we again consider a periodic system with period
p = 20 and unchanged parameters a*, but now with b* = G,(10,1,5)
and b~ = G(10,1, —5), which are much more sharply concentrated around
their maxima compared to those used previously. Figure 6 presents the
dynamics of this system for two distinct initial conditions: in the left panel,
a constant initial density o9 = 1 (which can also be represented as an infinite
sum of shifted indicator functions of an interval) and in the right panel,
00 = Gp(20,5,0). In both cases, the system approaches a stationary state
characterized by a spatial division into regions of low and high population
density separated by regions of density close to 1. The low-density regions
emerge near the maxima of b™, the high-density regions near the maxima
of b~ and the intermediate regions maintain a density close to 1 — the
asymptotic density of homogeneous system with the same a+ and b* = 0.

The scenarios presented above illustrate typical behavior of the described
spatial population model, in which the population density approaches a
stationary state that resembles a distorted version of the stationary state of
a homogeneous system. However, these examples are far from sufficient to
capture the full spectrum of possible dynamics exhibited by the model, even
for periodic systems and when the class of parameter functions is restricted
to Gaussians, as in the presented cases.
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