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The Euler-like operators
on tuples of Lagrangians and functions on bases

Abstract. Let FMm,n denote the category of fibered manifolds with m-
dimensional bases and n-dimensional fibres and their fibered diffeomorphisms
onto open images. We describe all FMm,n-natural operators C transforming
tuples (λ, g) of Lagrangians λ : JsY →

∧m T ∗M (or formal Lagrangians
λ : JsY → V ∗JsY ⊗

∧m T ∗M) on FMm,n-objects Y → M and functions
g : M → R into Euler maps C(λ, g) : J2sY → V ∗Y ⊗

∧m T ∗M on Y .
The most important example of such C is the Euler operator E (from the
variational calculus) (or the formal Euler operator E) treated as the operator
in question depending only on Lagrangians (or formal Lagrangians).

1. Introduction. All manifolds considered in this paper are assumed to be
finite dimensional, without boundary and smooth (i.e. of class C∞). Map-
pings between manifolds are assumed to be smooth (of class C∞).
Given a fibred manifold Y → M , we have the s-jet prolongation JsY of

Y → M and the obvious jet projection π2ss : J2sY → JsY for any positive
integer s. We also have the vertical bundle V Y → Y , its dual bundle
V ∗Y → Y , the cotangent bundle T ∗M and its mth inner product

∧m T ∗M .
Given fibred manifolds Z1 → M and Z2 → M with the same basis M , let
C∞
M (Z1, Z2) denote the space of all base preserving fibred maps of Z1 into
Z2. Let m be the dimension of the base M of Y . Elements from the space
C∞
M (JsY,

∧m T ∗M) are called (sth order) Lagrangians on Y →M . Elements
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from the space C∞
JsY (J

sY, V ∗JsY ⊗
∧m T ∗M) are called (sth order) formal

Lagrangians on Y →M . Elements from the space C∞
Y (JqY, V ∗Y⊗

∧m T ∗M)
are called Euler maps on Y →M . The concept of natural operators can be
found in [3].
By Proposition 49.3 of [3], any sth order Lagrangian λ : JsY →

∧m T ∗M
on a fibered manifold Y → M induces canonically the Euler map E(λ) :
J2sY → V ∗Y ⊗

∧m T ∗M . So, we have the so-called Euler operator

E : C∞
M

(
JsY,

m∧
T ∗M

)
→ C∞

Y

(
J2sY, V ∗Y ⊗

m∧
T ∗M

)
.

In [1] (see [4]), I. Kolář proved the following:

Theorem 1.1. Let m,n, s be positive integers. If m ≥ 2, then any regular,
π2ss -local and FMm,n-natural operator

C : C∞
M

(
JsY,

m∧
T ∗M

)
→ C∞

Y

(
J2sY, V ∗Y ⊗

m∧
T ∗M

)
is of the form cE, c ∈ R, where E is the Euler operator.

Here and later FMm,n denotes the category of fibred manifolds with m-
dimensional bases and n-dimensional fibres and their fibred diffeomorphisms
onto open images.
In our paper, we study the more general problem how a tuple (λ, g)
of a Lagrangian λ ∈ C∞

M (JsY,
∧m T ∗M) on an FMm,n-object Y → M

and a map g ∈ C∞(M,R) can induce canonically an Euler map C(λ, g) ∈
C∞
Y (J2sY, V ∗Y ⊗

∧m T ∗M).
Namely, in our paper, if m ≥ 2, we describe all regular and π2ss -local and

FMm,n-natural operators

C : C∞
M

(
JsY,

m∧
T ∗M

)
× C∞(M,R) → C∞

Y

(
J2sY, V ∗Y ⊗

m∧
T ∗M

)
.

Further, in [2] (see [4]), I. Kolář introduced the so-called formal Euler
operator

E : C∞
JsY

(
JsY, V ∗JsY ⊗

m∧
T ∗M

)
→ C∞

Y

(
J2sY, V ∗Y ⊗

m∧
T ∗M

)
for all FMm,n-objects Y →M . In [6], we proved:

Theorem 1.2. Let m,n, s be positive integers. Then any regular, π2ss -local
and FMm,n-natural operator

C : C∞
JsY

(
JsY, V ∗JsY ⊗

m∧
T ∗M

)
→ C∞

Y

(
J2sY, V ∗Y ⊗

m∧
T ∗M

)
is of the form cE, c ∈ R, where E is the formal Euler operator.
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In our paper, ifm ≥ 2, we also describe all regular, π2ss -local and FMm,n-
natural operators

C : C∞
JsY

(
JsY,V ∗JsY ⊗

m∧
T ∗M

)
×C∞(M,R)→C∞

Y

(
J2sY,V ∗Y ⊗

m∧
T ∗M

)
.

2. The main results.

Example 2.1. Let l=0,1,. . .,s. We define E(l)(λ,g):J2sY →V ∗Y ⊗
∧mT ∗M

by
E(l)(λ,g)|j2sxoσ

:=E((−1)l(g− g(xo))l ·λ)|j2sxoσ
for any λ∈ C∞

M (JsY,
∧mT ∗M) on an FMm,n-object Y →M , any g ∈

C∞(M,R), any j2sxo
σ ∈ J2s

xo
Y and any xo ∈M , where E is the Euler oper-

ator. Thus we have the corresponding FMm,n-natural operator

E(l) : C∞
M

(
JsY,

m∧
T ∗M

)
×C∞(M,R)→C∞

Y

(
J2sY,V ∗Y ⊗

m∧
T ∗M

)
.

We call E(l) the lth modification of E. Clearly, E(0) =E.

The first main result of our paper is the following:

Theorem 2.2. Let m,n,s be positive integers. If m≥ 2, then any regular,
π2ss -local and FMm,n-natural (i.e. invariant with respect to FMm,n-maps)
operator

C : C∞
M

(
JsY,

m∧
T ∗M

)
×C∞(M,R)→C∞

Y

(
J2sY,V ∗Y ⊗

m∧
T ∗M

)
is C =

∑s
l=0hl ·E(l) for some (uniquely determined by C) maps hl :R→R,

l= 0, . . . ,s, where the multiplication h ·C is defined by
(h ·C)(λ,g)|j2sxoσ = h(g(xo)) ·C(λ,g)|j2sxoσ

for any h :R→R, any C in question and any λ, g, j2sxo
σ as above.

In other words, the space of all C in question is the free (s+1)-dimensional
C∞(R)-module and the operators E(l) for l=0,1, . . . ,s form the basis in this
module.

Remark 2.3. The FMm,n-invariance of C means that for any FMm,n-map
f : Y → Y1, Lagrangians λ∈ C∞

M (JsY,
∧mT ∗M), λ1 ∈ C∞

M1
(JsY1,

∧mT ∗M1)
and maps g :M →R and g1 :M1 →R, if λ and λ1 are f -related and g
and g1 are f -related, then so are C(λ) and C(λ1). The π2ss -locality of
C means that C(λ,g)ρ depends on germπ2s

s (ρ)(λ,g) for any ρ∈ J2sY and
λ∈ C∞

M (JsY,
∧mT ∗M) and any g ∈ C∞(M,R). The regularity of C means

that C transforms smoothly parametrized families of tuples of Lagrangians
and maps on the bases into smoothly parametrized families of Euler maps.

Clearly, Theorem 1.1 is a simple consequence of Theorem 2.2. The proof
of Theorem 2.2 will be given in Section 4.
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Remark 2.4. If m= 1, Theorem 2.2 does not hold. Indeed, in [1],
I. Kolář constructed a regular, π21-local and FM1,n-natural operator W :

C∞
M (J1Y,T ∗M)→C∞

Y (J2Y,V ∗Y ⊗
∧mT ∗M) which is not cE. Suppose W =∑s

l=0hi ·E(l). Then W (λ) =W (λ,1)= h0(1)E(λ), i.e. W = h0(1)E which is
a contradiction.

Example 2.5. Let l=0, . . . ,s. By the same way as in the previous example,
we define E(l)(λ,g) : J2sY → V ∗Y ⊗

∧mT ∗M by

E(l)(λ,g)|j2sxoσ
:=E((−1)l(g− g(xo))l ·λ)|j2sxoσ

for any λ∈C∞
M (JsY,V ∗JsY ⊗

∧mT ∗M), any g∈C∞(M,R), any j2sxo
σ∈J2s

xo
Y

and any xo ∈M , where E is the formal Euler operator. Thus we have the
corresponding FMm,n-natural operator

E(l):C∞
JsY

(
JsY,V ∗JsY ⊗

m∧
T ∗M

)
×C∞(M,R)→C∞

Y

(
J2sY,V ∗Y ⊗

m∧
T ∗M

)
.

We call E(l) the lth modification of E. Clearly, E(0) =E.

The second main result of our paper is the following:

Theorem 2.6. Let m,n,s be positive integers. If m≥ 2, then any regular,
π2ss -local and FMm,n-natural operator

C :C∞
JsY

(
JsY,V ∗JsY ⊗

m∧
T ∗M

)
×C∞(M,R)→C∞

Y

(
J2sY,V ∗Y ⊗

m∧
T ∗M

)
is C =

∑s
l=0hl ·E(l) for some (uniquely determined by C) maps hl :R→R,

l= 0, . . . ,s, where h ·C is quite similar as in the previous theorem.
So, the space of all C in question is also the free (s+1)-dimensional

C∞(R)-module and the operators E(l) for l=0,1, . . . ,s form the basis in this
module.

Clearly, Theorem 1.2 for m≥ 2 is a simple consequence of Theorem 2.6.
The schema of the proof of Theorem 2.6 will be presented in Section 5.

3. Preparation. From now on, let N= {0,1,2, . . .} be the set of non-
negative integers and letRm,n denotes the trivial (affine) bundleRm×Rn→
Rm and let x1, . . . ,xm,y1, . . . ,yn be the usual coordinates onRm,n. Let dxµ=
dx1∧ . . .∧dxm. Given α= (α1, . . . ,αm)∈Nm, let xα := (x1)α1 · . . . · (xm)αm .
Given i= 1, . . . ,m, let 1i := (0, . . . ,0,1,0, . . . ,0)∈Nm where 1 is in the ith
position.
Given a fibred manifold Y →M , the s-jet prolongation JsY of Y →M
is the fibred manifold (with the base M) of all s-jets jsxσ at x∈M of local
sections σ :M→Y of Y →M . If Y →M and Y 1→M1 are fibred manifolds
withm-dimensional basesM andM1 and f :Y →Y 1 is a fibred map with the
base map f :M →M1 being local diffeomorphism, then we have the fibred
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map Jsf :JsY →JsY1 defined by Jrf(jsxo
σ)=jsf(xo)

(f ◦σ◦f−1), jsxo
σ∈Js

xo
Y ,

xo ∈M .
Let ((xi),(yjα)) be the induced coordinates on Js(Rm,n), where i=1,. . .,m,

j = 1, . . . ,n and α= (α1, . . .αm)∈Nm are such that |α|= α1+ · · ·+αm ≤ s.
We remind that

xi(jsxo
σ) = xio and yjα(j

s
xo
σ) = (∂ασ

j)(xo)

for any jsxo
σ= jsxo

(σ1, . . . ,σn)∈ Js
xo
(Rm,n) = Js

xo
(Rm,Rn), xo ∈Rm, where

∂α is the iterated partial derivative as indicated multiplied by 1
α! .

Lemma 3.1. Let i=1, . . . ,m, j=1, . . . ,n and α=(α1, . . . ,αm)∈Nm be such
that |α| ≤ s.
(i) For any τ = (τ1, . . . , τn)∈ (R\{0})n, we have

(Jsψτ )∗y
j
α = τ jyjα ,

where ψτ = (x1, . . . ,xm, 1
τ1
y1, . . . , 1

τn y
n) is the FMm,n-map.

(ii) For any t∈R\{0}, we have

(Jsφi
t)∗y

j
α = t−αiyjα ,

where φi
t = (x1, . . . , 1tx

i, . . . ,xm,y1, . . . ,yn) is the FMm,n-map.

(iii) If αi ̸= 0, we have

(Jsψ(i))∗y
1
α = y1α+x

iy1α+ y
1
α−1i ,

where ψ(i) = (x1, . . . ,xm,y1+xiy1,y2, . . . ,yn)−1 is the FMm,n-map (defined
over 0∈Rm).
(iv) If α1 ̸= 0, we have

(Jsχt)∗y
1
α−11+12 = y1α−11+12 + c1ty

1
α+ · · ·+ cα2+1t

α2+1y1(α1+α2,0,α3,...,αm)

for some c1, · · · ∈R with c1 ̸=0, where χt=(x1+ tx2,x2, . . . ,xm,y1, . . . ,yn) is
the FMm,n-map (defined if m≥ 2).

Proof. We prove (iii) and (iv), only. The proofs of the other parts are
similar.
Ad (iii). If αi ̸= 0, we have

y1α ◦Js(ψ(i))−1(jsxo
σ) = ∂α(σ

1+xiσ1)(xo)

= ∂ασ
1(xo)+x

i
o∂ασ

1(xo)+∂α−1iσ
1(xo)

for any jsxo
σ ∈ Js(Rm,n) = Js(Rm,Rn). Then

((Jsψ(i))∗y
1
α)(j

s
xo
σ) = y1α ◦Js(ψ(i))−1(jsxo

σ) = (y1α+x
iy1α+ y

1
α−1i)(j

s
xo
σ)

for any jsxo
σ ∈ Js(Rm,n) = Js(Rm,Rn).
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Ad (iv). Similarly, we have

y1α−11+12 ◦ (J
sχt)

−1(jsxo
σ) = ∂α−11+12(σ

1(x1+ tx2,x
2, . . . ,xm))((χt)

−1(xo))

= ∂α−11+12σ
1(xo)+ c1t∂ασ

1(xo)+ c2t
2∂α+11−12σ

1(xo)+ (. . .) ,

where χt = (x1+ tx2,x2, . . . ,xm) is the base map of χt. Then

((Jsχt)∗y
1
α−11+12)(j

s
xo
σ) = y1α−11+12 ◦ (J

sχt)
−1(jsxo

σ)

= (y1α−11+12 + c1ty
1
α+ . . .)(j

s
xo
σ) . □

4. Proof of Theorem 2.2. Because of the invariance of C with respect
to the FMm,n-charts, C is determined by the collection of values

⟨C(λ,g)ρ,v⟩ ∈
m∧
T ∗
0R

m

for all λ∈ C∞
Rm(Js(Rm,n),

∧mT ∗Rm), v ∈ T0Rn = V(0,0)R
m,n, ρ= j2s0 (σ)∈

J2s
0 (Rm,Rn) = J2s

0 (Rm,n) and g :Rm →R. (Here and from now on the
phrase “C is determined by...” means that if C ′ is another operator in
question giving the same collection of values as C, then C =C ′.)
For any element ρ= j2s0 (σ)∈ J2s

0 (Rm,Rn) = J2s
0 (Rm,n), there exists

an FMm,n-map ν :Rm,n →Rm,n transforming j2s0 (σ) into θ := j2s0 (0)∈
J2s
0 (Rm,Rn) = J2s

0 (Rm,n). (Indeed, we can choose ν := (x,y−σ(x)), where
x= (x1, . . . ,xm) and y= (y1, . . . ,yn).) So, we can additionally assume that
ρ= θ.
Because of the regularity of C, we can assume that d0g ̸= 0. Then using
the invariance of C with respect to a (0,0)-preserving FMm,n-map of the
form (φ(x),y1, . . . ,yn) (it preserves θ), we may additionally assume that
g= xm+ c, where c is an arbitrary real number.
We can obviously assume that v ̸= 0. Then using the invariance of C
with respect to a respective FMm,n-map of the form idRm ×ϕ for a lin-
ear isomorphism ϕ :Rn →Rn, we can additionally assume that v= ∂

∂y1 |(0,0)
(because ϕ preserves θ and g).
Further, we can write λ=L((xi),(yjα))dxµ+ f(x1, . . . ,xm)dxµ, where L
and f are arbitrary real valued maps with L((xi),(0)) = 0. By the regu-
larity of C, we can assume that f(0) ̸= 0. Then, using the invariance of
C with respect to FMm,n-map b= (F (x1, ..,xm),x2, . . . ,xm,y1, . . . ,yn)−1 ,
where ∂

∂x1F = f and F (0,x2, . . . ,xm) = 0, we may additionally assume that
f =1 because b preserves θ, g (as m≥ 2) and ∂

∂y1 |(0,0)
and it sends dxµ into

fdxµ. Consequently, we can write λ=L((xi),(yjα))dxµ+dxµ, where L is an
arbitrary real valued map with L((xi),(0)) = 0.
Further, because of the π2ss -locality of C, using the main result of [5], we
may additionally assume that L is a arbitrary polynomial in ((xi),(yjα)) of
degree ≤ q, where q is an arbitrary positive integer.
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Further, by the invariance of C with respect to ψτ =(x1, . . . ,xm, 1
τ1
y1, . . . ,

1
τn y

n) being FMm,n-map for any (τ1, . . . , τn)∈ (R\{0})n, we get the ho-
mogeneity condition〈

C(L((xi),(τ jyjα))dx
µ+dxµ,xm+ c)θ,

∂

∂y1 |(0,0)

〉

= τ1

〈
C(L((xi),(yjα))dx

µ+dxµ,xm+ c)θ,
∂

∂y1 |(0,0)

〉
,

see Lemma 3.1 (i). Then by the homogeneous function theorem ([3]), we

conclude that
〈
C(Ldxµ+dxµ,xm+ c)θ,

∂
∂y1 |(0,0)

〉
depends linearly on L and

C is determined by the collection of values〈
C(xβy1αdx

µ+dxµ,xm+ c)θ,
∂

∂y1 |(0,0)

〉
for α,β ∈Nm with |β| ≤ q and |α| ≤ s.
Further, by the invariance of C with respect to φi

t = (x1, . . . , 1tx
i, . . . ,xm,

y1, . . . ,yn) being FMm,n-map for any t∈R \{0} and any i= 1, . . . ,m and

using the fact that
〈
C(Ldxµ+dxµ,xm+ c)θ,

∂
∂y1 |(0,0)

〉
depends linearly on

L, we get the condition

tβi−αi

〈
C(xβy1αdx

µ+ tdxµ, tδimxm+ c)θ,
∂

∂y1 |(0,0)

〉

=

〈
C(xβy1αdx

µ+dxµ,xm+ c)θ,
∂

∂y1 |(0,0)

〉
because φi

t preserves C, θ and
∂

∂y1 |(0,0)
and it sends xβ into tβixβ, xm

into tδimxm (the Kronecker delta), y1α into t
−αiy1α and dx

µ into tdxµ, see
Lemma 3.1 (ii). Then putting t→ 0, we get the condition〈

C(xβy1αdx
µ+dxµ,xm+ c)θ,

∂

∂y1 |(0,0)

〉
= 0

for any α,β ∈Nm with both |α| ≤ s and βi >αi for some i=1, . . . ,m. Con-
sequently, C is determined by the collection of values〈

C(xβy1αdx
µ+dxµ,xm+ c)θ,

∂

∂y1 |(0,0)

〉
∈

m∧
T ∗
0R

m

for all c∈R and all α,β ∈Nm with |α| ≤ s and β1 ≤ α1, . . . ,βm ≤ αm.
Consider α,β ∈Nm with |α| ≤ s and β1 ≤ α1, . . . ,βm ≤ αm. Assume that

β ̸=(0). For example, let βi ̸=0 for some i=1, . . . ,m. Using the invariance of
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C with respect to ψ(i) = (x1, . . . ,xm,y1+xiy1,y2, . . . ,yn)−1 (being FMm,n-
map defined over some neighborhood of 0∈Rm), we get〈

C(xβ−1i(y1α+x
iy1α+ y

1
α−1i)dx

µ+dxµ,xm+ c)θ,
∂

∂y1 |(0,0)

〉

=

〈
C(xβ−1iy1αdx

µ+dxµ,xm+ c)θ,
∂

∂y1 |(0,0)

〉

because ψ(i) preserves C, xβ−1i , θ, ∂
∂y1 |(0,0)

, dxµ and xm+c and it sends y1α
into y1α+x

iy1α+ y
1
α−1i
, see Lemma 3.1 (iii). Then

〈
C(xβy1αdx

µ+dxµ,xm+ c)θ,
∂

∂y1 |(0,0)

〉

=−

〈
C(xβ−1iy1α−1idx

µ+dxµ,xm+ c)θ,
∂

∂y1 |(0,0)

〉

because
〈
C(Ldxµ+dxµ)θ,x

m+ c)θ,
∂

∂y1 |(0,0)

〉
depends linearly on L. Re-

peating this process, we get〈
C(xβy1αdx

µ+dxµ,xm+ c)θ,
∂

∂y1 |(0,0)

〉

= (−1)|β|

〈
C(y1(α−β)dx

µ+dxµ,xm+ c)θ,
∂

∂y1 |(0,0)

〉
.

Consequently, C is determined by the collection of values〈
C(y1αdx

µ+dxµ,xm+ c)θ,
∂

∂y1 |(0,0)

〉
∈

m∧
T ∗
0R

m

for all c∈R and all α∈Nm with |α| ≤ s.
Let α∈Nm, where |α| ≤ s, and assume that αi ̸= 0 for some i=

1, . . . , m−1. For example, let α1 ̸= 0. For any t∈R, the FMm,n-map
χt = (x1+ tx2,x2, . . . ,xm,y1, . . . ,yn) (defined if m≥ 2) preserves dxµ, θ,
∂

∂y1 |(0,0)
and xm+ c and it sends y1α−11+12

into y1α−11+12
+ c1ty

1
α+ . . .

+cα2+1t
α2+1y1(α1+α2,0,α3,...,αm) for some c1, . . .∈R with c1 ̸=0, see Lemma 3.1

(iv).
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Then using the invariance of C with respect to χt, we get〈
C((y1α−11+12 + c1ty

1
α+ . . .)dx

µ+dxµ,xm+ c)θ,
∂

∂y1 |(0,0)

〉

=

〈
C(y1α−11+12dx

µ+dxµ,xm+ c)θ,
∂

∂y1 |(0,0)

〉

for any t∈R. Then since
〈
C(Ldxµ+dxµ,xm+ c)θ,

∂
∂y1 |(0,0)

〉
depends lin-

early on L, we get
〈
C(y1αdx

µ+dxµ,xm+ c)θ,
∂

∂y1 |(0,0)

〉
= 0.

So, C is determined by the collection of values〈
C(y1(0,...,0,k)dx

µ+dxµ,xm+ c)θ,
∂

∂y1 |(0,0)

〉
∈

m∧
T ∗
0R

m

for all c∈R and k= 0,1, . . . , r.
Consequently, C is determined by the collection of (smooth because C is
regular) maps C⟨k⟩ :R→R for k= 0, . . . ,s defined by

C⟨k⟩(c)dxµ|0 :=

〈
C(y1(0,...,0,k)dx

µ+dxµ,xm+ c)θ,
∂

∂y1 |(0,0)

〉
, c∈R .

More precisely, if C ′ is an another operator in question such that C⟨k⟩ =
(C ′)⟨k⟩ for k= 0, . . . ,s, then C =C ′.
On the other hand, given a collection of maps hl :R→R for l=0, . . . ,s, we
have (

∑s
l=0hl ·E(l))⟨k⟩ = hk for k= 0,1, . . . ,s. Indeed, using the coordinate

expression of the Euler map E(λ) from [3], we have(
s∑

l=0

hl ·E(l)

)⟨k⟩

(c)dxµ|0

=

s∑
l=0

hl(c)

〈
E((−1)l(xm)l(y1(0,...,0,k)dx

µ+dxµ))|j2s0 (0),
∂

∂y1 |(0,0)

〉

=

s∑
l=1

hl(c)(−1)l(−1)k
1

k!

∂k

∂(xm)k
∂

∂yk(0,...,0,k)
((xm)ly1(0,...,0,k))|j2s0 (0)dx

µ
|0

= hk(c)dx
µ
|0 .

The proof of the theorem is complete.

5. Schema of the proof of Theorem 2.6. The proof of Theorem 2.6 is
the following modification of the one of Theorem 2.2.
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Because of the invariance of C with respect to the FMm,n-charts, C is
determined by the collection of values

⟨C(λ,g)ρ,v⟩ ∈
m∧
T ∗
0R

m

for all λ∈ C∞
JsRm,n(JsRm,n,V ∗JsRm,n⊗

∧mT ∗Rm), g ∈ C∞(Rm,R), v ∈
T0R

n = V(0,0)R
m,n and ρ∈ J2s

0 (Rm,Rn) = J2s
0 (Rm,n). Quite similarly as

in the proof of Theorem 2.2, we can assume that ρ= θ= j2s0 (0), g= xm+ c

and v= ∂
∂y1 |(0,0)

.

Further, we can write λ=
∑
Lβ
k((x

i),(yjα))d̃ykβ ⊗dxµ, where L
β
k are real

valued maps for k=1, . . . ,n and all β∈Nm with |β|≤s and where d̃h denotes
the restriction to V JsY of the differential dh of h : JsY →R.
Because of the π2ss -locality of C, we may assume that L

β
k are polynomials

in ((xi),(yjα)) of degree ≤ q, where q is an arbitrary positive integer.
Further, quite similarly as in the proof of Theorem 2.2, by the invariance
of C with respect to ψτ = (x1, . . . ,xm, 1

τ1
y1, . . . , 1

τn y
n) for any (τ1, . . . , τn)∈

(R \{0})n and the homogeneous function theorem, we can conclude that〈
C(λ,xm+ c)θ,

∂
∂y1 (0,0)

〉
is linear in λ and C is determined by the collection

of values 〈
C(xβ d̃y1α⊗dxµ,xm+ c)θ,

∂

∂y1 |(0,0)

〉
for all α,β ∈Nm with |α| ≤ s.
Then by the respective part of proof of Theorem 2.2 with xβ d̃y1α⊗dxµ
instead of xβy1αdx

µ+dxµ and using d̃(xiy1α)=x
id̃y1α (being the consequence

of dh=0 on V JsY for any h :M→R), we finally conclude that C is deter-
mined by the collection of values〈

C(d̃y1(0,...,0,k)⊗dx
µ,xm+ c)θ,

∂

∂y1 |(0,0)

〉
∈

m∧
T ∗
0R

m

for all c∈R and k= 0,1, . . . ,s.
Consequently, C is determined by the collection of (smooth) maps C⟨k⟩ :

R→R for k= 0, . . . ,s defined by

C⟨k⟩(c)dxµ|0 :=

〈
C(d̃y1(0,...,0,k)⊗dx

µ,xm+ c)θ,
∂

∂y1 |(0,0)

〉
, c∈R .

On the other hand, given a collection of maps hl :R→R for l= 0, . . . ,s,
one can see that (

∑s
l=0hl ·E(l))⟨k⟩ = hk for k= 0,1, . . . ,s.

The proof of Theorem 2.6 is complete.
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6. Final observations. Let ABm,n denote the category of all affine bun-
dles A→M with m-dimensional bases and n-dimensional fibres and their
affine bundle isomorphisms onto open images. It is easy to see that in fact
we have also deduced the following results:

Theorem 6.1. Let m,n,s be positive integers. If m≥ 2, then any regular,
π2ss -local and ABm,n-natural (i.e. invariant with respect to ABm,n-maps)
operator

C : C∞
M

(
JsA,

m∧
T ∗M

)
×C∞(M,R)→C∞

A

(
J2sA,V ∗A⊗

m∧
T ∗M

)
is C =

∑s
l=0hl ·E(l) for some (uniquely determined by C) maps hl :R→R,

l=0, . . . ,s. In other words, the space of all C in question is the free (s+1)-
dimensional C∞(R)-module and the operators E(l) for l=0,1, . . . ,s form the
basis in this module.

Theorem 6.2. Let m,n,s be positive integers. If m≥ 2, then any regular,
π2ss -local and ABm,n-natural operator

C :C∞
JsA

(
JsA,V ∗JsA⊗

m∧
T ∗M

)
×C∞(M,R)→C∞

A

(
J2sA,V ∗A⊗

m∧
T ∗M

)
is C =

∑s
l=0hl ·E(l) for some (uniquely determined by C) maps hl :R→

R, l= 0, . . . ,s. So, the space of all C in question is also the free (s+1)-
dimensional C∞(R)-module and the operators E(l) for l=0,1, . . . ,s form the
basis in this module.

Proof. Indeed, all FMm,n-maps we used in the previous sections are in
fact ABm,n-maps, except FMm,n-charts. But they may be replaced by
ABm,n-charts if we study ABm,n-natural operators. □

Theorem 2.2 is not true in the vector bundle situation instead of the
fibered manifold one because we have:

Example 6.3. Let λ : JsH→
∧mT ∗M be an sth order Lagrangian on a

vector bundle H→M . Then the derivative Eλ : JsH→
∧mT ∗M of λ with

respect to E , where E is the Euler (dilatation) vector field on the vector
bundle JrH→M , is also an sth order Lagrangian on H→M . Let U(λ) :=
E(Eλ) : J2sH→ V ∗H⊗

∧mT ∗M , where E is the Euler operator. Then we
have the resulting operator

U : C∞
M

(
JsH,

m∧
T ∗M

)
→C∞

H

(
J2sH,V ∗H⊗

m∧
T ∗M

)
.

Of course, U is VBm,n-natural, regular, π2ss -local and (even) linear but it
is not of the form cE, where VBm,n denotes the category of vector bundles
with m-dimensional bases and n-dimensional fibres and their vector bundle
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isomorphisms onto open images. Suppose, U =
∑s

l=0hl ·E(l). Then U(λ) =
U(λ,1) = h0(1)E(λ), i.e. U = h0(1)E which is a contradiction.
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