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The Euler-like operators
on tuples of Lagrangians and functions on bases

ABSTRACT. Let FM,,,, denote the category of fibered manifolds with m-
dimensional bases and n-dimensional fibres and their fibered diffeomorphisms
onto open images. We describe all M, ,-natural operators C' transforming
tuples (), g) of Lagrangians A : J°Y — A™T*M (or formal Lagrangians
A JY 5 VY @ A" T*M) on F M, n-objects Y — M and functions
g : M — R into Euler maps C(\,g9) : J*Y — V'Y @ A"T*M on Y.
The most important example of such C is the Euler operator E (from the
variational calculus) (or the formal Euler operator E) treated as the operator
in question depending only on Lagrangians (or formal Lagrangians).

1. Introduction. All manifolds considered in this paper are assumed to be
finite dimensional, without boundary and smooth (i.e. of class C*). Map-
pings between manifolds are assumed to be smooth (of class C°).

Given a fibred manifold Y — M, we have the s-jet prolongation J°Y of
Y — M and the obvious jet projection 72% : J2Y — J*Y for any positive
integer s. We also have the vertical bundle VY — Y, its dual bundle
V*Y — Y, the cotangent bundle T*M and its mth inner product \™ T*M.
Given fibred manifolds Z; —+ M and Zy — M with the same basis M, let
CS(Zy, Z3) denote the space of all base preserving fibred maps of Z; into
Zs. Let m be the dimension of the base M of Y. Elements from the space
C(J°Y, N T* M) are called (sth order) Lagrangians on Y — M. Elements
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from the space C3y (J°Y, V*J*Y @ A™ T*M) are called (sth order) formal
Lagrangians on Y — M. Elements from the space C5°(J1Y, V*Y @A™ T* M)
are called Euler maps on Y — M. The concept of natural operators can be
found in [3].

By Proposition 49.3 of [3], any sth order Lagrangian A : JY — A" T*M
on a fibered manifold Y — M induces canonically the Euler map E()) :
J?#Y = V*Y @ N T*M. So, we have the so-called Euler operator

E:Cy (JSY, A\ T*M> — C5® (JQSY, VY ® /\T*M) .

In [1] (see [4]), I. KolaF proved the following:

Theorem 1.1. Let m,n, s be positive integers. If m > 2, then any reqular,
725-local and F M n-natural operator

C:C <JSY, /\T*M> — <J2SY, VY e [\ T*M>

is of the form cE, c € R, where E is the Euler operator.

Here and later 7 M,, ,, denotes the category of fibred manifolds with m-
dimensional bases and n-dimensional fibres and their fibred diffeomorphisms
onto open images.

In our paper, we study the more general problem how a tuple (), g)
of a Lagrangian A € C(J*Y, AN T*M) on an FM,y, ,-object ¥ — M
and a map g € C>°(M,R) can induce canonically an Euler map C(}\,g) €
CR(J#Y, VY @ N T*M).

Namely, in our paper, if m > 2, we describe all regular and 72-local and
F M, n-natural operators

C:Cy (JSY, /\T*M) x C®°(M,R) — C5° <J2SY, VY ® /\T*M) .

Further, in [2] (see [4]), I. Kolaf introduced the so-called formal Euler
operator

E:C3y <J5Y, VY e A T*M) — P (JQSY, VY e N T*M)

for all F M, ,-objects Y — M. In [6], we proved:

Theorem 1.2. Let m,n,s be positive integers. Then any regular, 725-local
and F My, n-natural operator

C:CRy (JSY, VXY ® /\T*M) — CF (JQSY, VY ® /\T*M)

is of the form cE, ¢ € R, where E is the formal Euler operator.
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In our paper, if m > 2, we also describe all regular, 72%-local and F M, .-
natural operators

C:CRy (JSY, V*JSY@/\T*M) XC®(M,R)—C <J23Y, V*Y®/\T*M>.

2. The main results.
Example 2.1. Let [=0,1,...,s. Wedefine EO()\,g):J>Y > V*YQA\™T*M
by

ED (920 = E((=)'(g— 9(0))" N j2e
for any AeC(JY,AN"T*M) on an FM,y, -object Y — M, any ge
C®(M,R), any j20 € J25Y and any z, € M, where E is the Euler oper-
ator. Thus we have the corresponding F M,, ,-natural operator

EW:c5e <JSY, /\T*M) x C°(M,R) — C5° <J25Y, VY ® /\T*M) .

We call E® the Ith modification of E. Clearly, () = E.
The first main result of our paper is the following:

Theorem 2.2. Let m,n,s be positive integers. If m > 2, then any regular,
Wgs—local and F My, p-natural (i.e. invariant with respect to F M, n,-maps)
operator

C:C <J5Y, /\T*M) x C®°(M,R) — C (JQSY, VY ® /\T*M)

is C=> gl -EW for some (uniquely determined by C') maps h;: R — R,
1=0,...,s, where the multiplication h-C is defined by

(h ’ C)()‘7g)|j§§0 = h(g(xo)) 'C()‘ag)\j%ga

for any h: R — R, any C in question and any X, g, jgja as above.

In other words, the space of all C' in question is the free (s+1)-dimensional
C*>(R)-module and the operators EW for1=0,1,...,s form the basis in this
module.

Remark 2.3. The F M,, ,,-invariance of C' means that for any FM,, ,-map
f:Y =Y, Lagrangians A € Cap(J°Y, A" T*M), A € C3g, (J*Y1, N"" T* M)
and maps g: M — R and g1 : M1 — R, if A and )\ are f-related and ¢
and g; are f-related, then so are C'(\) and C()\1). The 72%-locality of
C means that C(),g), depends on germ s, (A, g) for any p€ J?Y and
AeCR(JY,N"T*M) and any g € C>°(M,R). The regularity of C' means
that C' transforms smoothly parametrized families of tuples of Lagrangians
and maps on the bases into smoothly parametrized families of Euler maps.

Clearly, Theorem 1.1 is a simple consequence of Theorem 2.2. The proof
of Theorem 2.2 will be given in Section 4.
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Remark 2.4. If m=1, Theorem 2.2 does not hold. Indeed, in [1],
I. Kolaf constructed a regular, 73-local and FM; p-natural operator W :
C(JVY, T*M) — C2(J?Y,V*Y @ N T* M) which is not cE. Suppose W =
S _ohi- EW. Then W(A) =W (A1) = ho(1)E()), i.e. W = ho(1)E which is

a contradiction.

Example 2.5. Let [=0,...,s. By the same way as in the previous example,
we define ED (X, g): J2Y - V*Y @ A" T*M by

EV\ )z = B(=1) (9= glwo))' - Myszso

for any A€ C37(J°Y, V*J*Y @ N T*M), any g€ C>(M,R), any j2°c € J2Y
and any z, € M, where E is the formal Euler operator. Thus we have the
corresponding FM,, ,-natural operator

EV:.c%, (JSY, VY ® /\T*M> xC°(M,R) —C5® (JZSY, VY ® /\T*M) .

We call E® the Ith modification of E. Clearly, E® = E.
The second main result of our paper is the following:

Theorem 2.6. Let m,n,s be positive integers. If m > 2, then any reqular,
W?S—local and F My, n-natural operator

C:C%y <J5Y, V*JSY®/\T*M> xC®(M,R)—C¥ (.]25}/, V*Y@/\T*M)

isC=>] ol EY for some (uniquely determined by C') maps h; : R — R,
1=0,...,s, where h-C is quite similar as in the previous theorem.

So, the space of all C in question is also the free (s+ 1)-dimensional
C*(R)-module and the operators E®D for1=0,1,...,s form the basis in this
module.

Clearly, Theorem 1.2 for m > 2 is a simple consequence of Theorem 2.6.
The schema of the proof of Theorem 2.6 will be presented in Section 5.

3. Preparation. From now on, let N={0,1,2,...} be the set of non-
negative integers and let R™" denotes the trivial (affine) bundle R™ x R" —

R™ and let z',...,2™,y',...,y" be the usual coordinates on R™". Let dat =
dz' A...Adx™. Given a= (aq,...,0p,) € N™ let 2% := (1) ... .. (x™)¥m,
Given i=1,...,m, let 1;:=(0,...,0,1,0,...,0) € N™ where 1 is in the ith
position.

Given a fibred manifold Y — M, the s-jet prolongation J°Y of ¥ — M
is the fibred manifold (with the base M) of all s-jets jio at x € M of local
sections 0: M —-Y of Y - M. If Y — M and Y! — M; are fibred manifolds
with m-dimensional bases M and M; and f:Y —Y!is a fibred map with the
base map f: M — M; being local diffeomorphism, then we have the fibred
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map J°f:J°Y — J°Y1 defined by J" f(j; o) :j;i(xo)(fOUOi_l), Je,0E€JS Y,
T, € M. ‘ ' a
Let ((z'),(y2)) be the induced coordinates on J*(R™"), where i=1,...,m,
j=1,...,n and o= (a1,...am,) € N™ are such that |a|=a; + -+ am <s.
We remind that
#'(j5,0) =5 and 4 (j5,0) = (Fac?)(z,)
for any ji o=js (o!,...,0™) € J5 (R™") =Js (R™R"), z, € R™, where
Oy is the iterated partial derivative as indicated multiplied by 5
Lemma 3.1. Leti=1,....m, j=1,....,n and a=(a1,...,ay) EN" be such
that |a] < s.
(i) For any 7= (71,...,7") € (R\ {0})", we have
(e )l =T
where ¥, = (x!,... 2™, T%yl,...,%ny") is the F My, n-map.
(ii) For any t € R\ {0}, we have
(Joph)sylh =ty
,%xi,...,xm,yl,...,y") is the F M, n-map.
(i) If a; # 0, we have
(J*9)ya = o+ @'ya + Yo,

where v = (21, ... 2™ y! + iyl y?, . y") L is the F Moy, -map (defined
over 0 R™).
(iv) If oy #0, we have

where i = (z1,...

ta2+1 1

1 1 1
(‘]Sxt)*ya—ll-l-h =Ya-1141, T 1Yo+ + Cant1 Y(ar14as,0,a3,....am)

2

for some c1,--- €R with ¢1 #0, where x; = (x' +tx?, 22, 2™yt ... y") is

the F Moy, ,-map (defined if m > 2).

Proof. We prove (iii) and (iv), only. The proofs of the other parts are
similar.

Ad (iii). If oy #0, we have
Yo 0 T (W) 7N (55,0) = Dalo +a'0") (o)
= aal(xo) + xé@aal(xo) + 8,1_12.01(3:0)
for any j; o€ J*(R™")=J°(R™,R"). Then
(T D)aya) (G5,0) = ya o I (D)7 (53,0) = (o + 'ya + a1, ) (G5,0)
for any j; o€ J*(R™")=J*(R™,R").
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Ad (iv). Similarly, we have

Yo 1,415 © (J5x0) 71 (5, 0) = Oac141, (0 (@' + L, 2%, 2™)) ((xe) ™ (0)
= 3&—11+1201 (xo) + cltaaal(mo) + 02t28a+11,1201(1:0) +(...),

where ; = (x! +tx? 22,... ™) is the base map of x;. Then

((JSXt)*yé—thh)(j;oU) = yé—h—i—lg ° (Jth)_l(j;oO’)
= (ycly—11+12 +Cltyg¢ +...)(Jz,0). U

4. Proof of Theorem 2.2. Because of the invariance of C' with respect
to the F M, n,-charts, C' is determined by the collection of values

(C(\9)pv) € NTER™

for all A€ Cgn (J*(R™"), A" T*R™), v € THR" = V(g ) R™", p= jas(o) €
JE(R™RY) = J2(R™") and g:R™— R. (Here and from now on the
phrase “C is determined by...” means that if C’ is another operator in
question giving the same collection of values as C, then C'=C".)

For any element p=j3*(c)€ JZ5(R™ R")=J2(R™"), there exists
an FMy, ,-map v:R™" — R™" transforming j2*(o) into 6:=j2%(0) €
JEE(R™ R") = J3*(R™"). (Indeed, we can choose v:= (z,y — o(z)), where
r=(x',...;2™) and y = (y',...,y").) So, we can additionally assume that
p=20.

Because of the regularity of C, we can assume that dog # 0. Then using
the invariance of C' with respect to a (0,0)-preserving FM,, ,-map of the
form (p(x),y',...,y") (it preserves 6), we may additionally assume that
g=1a"+c, where c is an arbitrary real number.

We can obviously assume that v#0. Then using the invariance of C
with respect to a respective FM,, ,-map of the form idgrm x ¢ for a lin-

ear isomorphism ¢ : R" — R™, we can additionally assume that v = 21

99" 1(0,0)
(because ¢ preserves 6 and g).

Further, we can write A = L((2%), (y))dz* + f(x!,...,2™)dz", where L
and f are arbitrary real valued maps with L((z%),(0))=0. By the regu-
larity of C, we can assume that f(0)#0. Then, using the invariance of
C with respect to F My, p-map b= (F(z!,..,a™),2%,...;a™yl,...,y") "1,
where %F: fand F(0,2%,...,2™) =0, we may additionally assume that

and it sends dz* into
(0,0)

' |
fdax*. Consequently, we can write A= L((z"), (y4))da* +da#, where L is an
arbitrary real valued map with L((z’),(0)) =0.
Further, because of the w25-locality of C, using the main result of [5], we

— 0
f =1 because b preserves ¢, g (as m >2) and 51

may additionally assume that L is a arbitrary polynomial in ((z*),(y4)) of
degree < g, where ¢ is an arbitrary positive integer.
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Further, by the invariance of C' with respect to 1, = (z',...,2™, Ly',...,
T

Ly") being F M, ,-map for any (r1,...,7) € (R\ {0})", we get the ho-

mogeneity condition

C(L((z"), (r7y)))dxH + da, z™ + ¢)g, i1
Y (0,0)

=1 { CL((@"), ())da? + da¥ 2™ +-0)o, ),
Y 10,0
see Lemma 3.1 (i). Then by the homogeneous function theorem ([3]), we
conclude that <C(de“ +dzt, 2™ + ¢)g, 6%1‘

C is determined by the collection of values

(070)> depends linearly on L and

0
C(aPyldzt + da*, 2™+ c)g, —
< ¢ Y |(0,0)
for a, p € N™ with || < ¢ and |a] <s. ‘ .
Further, by the invariance of C' with respect to ¢} = (xl,...,%xl,...,azm,
y',...,y") being FM,, ,-map for any t € R\ {0} and any i=1,...,m and
using the fact that <C(Ldm“ +dzt, 2™+ ¢)g, 8%1‘

L, we get the condition

0.0) depends linearly on

thi=ei { C(aPylda + tdat 19 x™ + c)y, il
' (0,0

0
= { O(zPyLdat 4 dat, x™ + ¢)g, =
< Y 0,0

0
97(0,0)
into t%mz™ (the Kronecker delta), y) into t~®yl and da* into tdat, see
Lemma 3.1 (ii). Then putting ¢ — 0, we get the condition

0
C(aPyldzt + da*, 2™ 4 c)g, — =0
< Y (0,0)

because ! preserves C, 6 and and it sends z? into tFizf, 2™

for any «,f € N™ with both |a| <s and f3; > a; for some i =1,...,m. Con-
sequently, C' is determined by the collection of values

a m
C(aPyldzt + da?, 2™ + ¢)g, — e \NT;R™
< 9y (0.0 AT

for all ce R and all o, € N™ with |a| < s and 81 < aq,...,8n < Qm.
Consider o, 5 € N™ with |a| <s and 51 <aq,...,Hn < qy,. Assume that
B+#(0). For example, let 3; #0 for some :=1,...,m. Using the invariance of
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C with respect to @ = (z!,... 2™ y* + 2y ,%,...,y") " (being F M-
map defined over some neighborhood of 0 € R™), we get

C(xﬁfli(yé—kxiya—kya 1, )dot 4+ dat 2™+ c)g, 5 9
Y 0,0)
= ( C(aPNiyldat +dat 2™ 4 ¢)g, = 0
Y (0,0)

because 1) preserves C, z#~1i, 6, 8?; 0.0 dz# and 2™ + ¢ and it sends y,

into A + 2"y, +y4_1,, see Lemma 3.1 (iii). Then

<C( Ldat + dat x +C)9’8§ >
1(0,0)

=—(C"tiyl 1 dot +dxt 2™+ c)g, 5 0
' 0,0

because <C(Lda:“+dx“)9,xm+c)9,8%1|(0 0)> depends linearly on L. Re-

peating this process, we get

C(zPyldat + da*, ™ + ¢)g, = 0
' 10,0)
= (-1)lAl C(y(a gydat +dzt, 2™ +c)g, o 0
' (0.0

Consequently, C' is determined by the collection of values

> € 7\T§Rm

3}
C(yldz" +dz", 2™ + )y,
< ( )9 39 1(0,0)

for all ce R and all o € N™ with |a] <s.

Let a«€N™, where |a|<s, and assume that a;#0 for some i=
1,..., m—1. For example, let a3 #0. For any t€ R, the FM,, ,-map
e = (zt+tz? 22, .. 2™y, . y") (defined if m >2) preserves dat, 0,

d . . . 1 !
3T |(0.0) and z™4c¢ and it sends Yo1,41, Into yl oy 1 Fertyb+...

tCa +1ta2+1y(

(iv).

01-+002.,0,005,0 100 for some ¢q,... € R with ¢; #0, see Lemma 3.1
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Then using the invariance of C' with respect to x:, we get

d
C((yooi, 11, + cityl +..)dzt + dzt 2™ + ¢)g, 1
Y 10,0)

0
=(C(yt_ de* +dz? 2™ +¢)g, =—
< Wactiss ) ay1|<o,o>>

for any t € R. Then since <C(Ldaj“ +dzt, ™ + )y, 8%1“0 0)> depends lin-

early on L, we get <C(yéda:“ +dzt, 2™ +c)

0 -
% 9yT(0,0)
So, C'is determined by the collection of values

a m
<C’(y(10,...,0,k)d:c“ +dat, ™ + C)9> (971/1‘(0 0)> S /\TSRW

forall ce R and k=0,1,...,r.
Consequently, C' is determined by the collection of (smooth because C' is
regular) maps C%*) : R = R for k=0,...,s defined by

0
C® (e)da = { C(y dz* +dz?, 2™ +¢)g, — , ceR.
(©)dat, < (o, .o B o

More precisely, if C’ is an another operator in question such that Ck) =
(C"YE) for k=0,...,s, then C=C".

On the other hand, given a collection of maps h;: R— R for [=0,...,s, we
have (> ol - EMOY®) = p, for k=0,1,...,s. Indeed, using the coordinate
expression of the Euler map E()) from [3], we have

s (k)
(Z hy - E(l)> (c)dxﬁ)
1=0

= hi(c) <E((—1)l(wm)l<y%o,...,o,k)dx“ +dat)) a5 (0 ° >

=0 9y' |(0.0)
s 1 o 5
= hl(C)(_l)l(—l)k— — ((Scm)lylo ok ) a0 dat
E ELO(@™)* Oyfsy o (0,..,0,k) 1532 (0) 4o
= hk(c)dzvﬁ).

The proof of the theorem is complete.

5. Schema of the proof of Theorem 2.6. The proof of Theorem 2.6 is
the following modification of the one of Theorem 2.2.
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Because of the invariance of C' with respect to the FM,, ,,-charts, C' is
determined by the collection of values

(C(\g)p0) € \NTER™

for all A€ C%pmn (JR™ VSR @ A" T*R™), g€ C®(R™R), ve

ToR™ =V0R™" and pe J3*(R™ R") = J§*(R™™"). Quite similarly as

in the proof of Theorem 2.2, we can assume that p=60=j2%(0), g=2™+c¢
o)

and v = =% .
9y (0,0)

Further, we can write A = ZLQ((mZ),(y&))JyZ ® dz*, where Lf are real
valued maps for k=1,...,n and all € N™ with |5| <s and where dh denotes
the restriction to VJSY of the differential dh of h: J°Y — R.

Because of the 72%-locality of C, we may assume that Lﬂ are polynomials
in ((2%), () of degree < ¢, where ¢ is an arbitrary positive integer.

Further, quite similarly as in the proof of Theorem 2.2, by the invariance
of C' with respect to ¢, = (a:l,...,acm,%lyl,...,}ny") for any (71,...,7") €
(R\{0})™ and the homogeneous function theorem, we can conclude that
<C()\,xm +¢)o, aiyl

of values

is linear in A and C'is determined by the collection

(0,0)

0
C(zPdyl @ dat, 2™ + ¢)g,
< ( )0 8y |(00)>

for all o, € N™ with |a| <s.

Then by the respective part of proof of Theorem 2.2 with xﬁdyé Rdx*
instead of 27yl dzt +dz* and using d(z'y)) =z'dy' a (being the consequence
of dh=0 on VJ*Y for any h: M — R), we finally conclude that C' is deter-
mined by the collection of values

C(dy}, @dzt 2™+ ¢)g, — TER™
< (0,...,0,k) 8y 1(0,0) /\ 0
forallce R and k=0,1,...,s
Consequently, C' is determined by the collection of (smooth) maps C' (k) .

R — R for k=0,...,s defined by

-----

~ 0
c®(e)da = { C dy Qdzt, ™ +c)g, — ceR.
( ) 0" < ( (0,...,0,k) 8y 1(0.0)

On the other hand, given a collection of maps h;: R — R for [ =0,...,s,
one can see that (37_oh; - EW)F) =y for k=0,1,...,s
The proof of Theorem 2.6 is complete.
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6. Final observations. Let AB,,, denote the category of all affine bun-
dles A — M with m-dimensional bases and n-dimensional fibres and their
affine bundle isomorphisms onto open images. It is easy to see that in fact
we have also deduced the following results:

Theorem 6.1. Let m,n,s be positive integers. If m > 2, then any reqular,
72%-local and ABy,n-natural (i.e. invariant with respect to ABp, ,-maps)
operator

C:C (JSA, /\T*M) x C°(M,R) = CY (JQSA,V*A® /\T*M)

is C=> ol -EW for some (uniquely determined by C') maps h;: R — R,
[=0,...,s. In other words, the space of all C" in question is the free (s+1)-
dimensional C*°(R)-module and the operators EW for1=0,1,...,s form the
basis in this module.

Theorem 6.2. Let m,n,s be positive integers. If m > 2, then any reqular,
Wgs-local and AB., n-natural operator

C:CR, (JSA,V*JSA@) /\T*M) xC®(M,R)—=CY <J25A,V*A® /\T*M)

is C=)7 ol ‘EO for some (uniquely determined by C) maps hy: R —
R, 1=0,...,s. So, the space of all C' in question is also the free (s+1)-
dimensional C*°(R)-module and the operators E® fori=0,1,...,s form the
basis in this module.

Proof. Indeed, all FM,, ,-maps we used in the previous sections are in
fact AB,, ,-maps, except FM,, ,-charts. But they may be replaced by
AB,, n-charts if we study AB,, ,-natural operators. O

Theorem 2.2 is not true in the vector bundle situation instead of the
fibered manifold one because we have:

Example 6.3. Let A\: J°H — \"'T*M be an sth order Lagrangian on a
vector bundle H — M. Then the derivative EX: JSH — AN™T*M of X\ with
respect to £, where £ is the Euler (dilatation) vector field on the vector
bundle J"H — M, is also an sth order Lagrangian on H — M. Let U(\) :=
E(EN):J*H - V*H® \™T*M, where E is the Euler operator. Then we
have the resulting operator

U:C3 <J5H,/\T*M> —CF (JZSH, V*H®/\T*M) .

Of course, U is VB, n-natural, regular, m25-local and (even) linear but it
is not of the form cE, where VB,,,, denotes the category of vector bundles
with m-dimensional bases and n-dimensional fibres and their vector bundle
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isomorphisms onto open images. Suppose, U =Y"7_h;- EW. Then U(\) =
U(A1)=ho(1)E()N), i.e. U=ho(1)E which is a contradiction.
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