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A new hybrid generalization of Fibonacci
and Fibonacci–Narayana polynomials

Abstract. The hybrid numbers are generalization of complex, hyperbolic
and dual numbers. The hybrinomials are polynomials which generalize hybrid
numbers. In this paper, we introduce and study the distance Fibonacci hy-
brinomials, i.e. hybrinomials with coefficients being distance Fibonacci poly-
nomials.

1. Introduction. The hybrid numbers were introduced by Özdemir in [13]
as a new generalization of complex, hyperbolic and dual numbers.
Let K be the set of hybrid numbers Z of the form

Z = a+ bi+ cε+ dh,

where the coefficients a, b, c, d are real numbers and i, ε, h are operators
such that

(1) i2 = −1, ε2 = 0, h2 = 1

and

(2) ih = −hi = ε+ i.

The addition and subtraction of hybrid numbers are done by adding and
subtracting corresponding terms and hence their coefficients. The hybrid
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numbers multiplication is defined using (1) and (2). Note that using the
formulas (1) and (2), we can find the product of any two hybrid units. The
following Table 1 presents products of i, ε, and h.

· i ε h
i −1 1− h ε+ i
ε h+ 1 0 −ε
h −ε− i ε 1

Table 1. The hybrid numbers multiplication.

Using the rules given in Table 1, the multiplication of hybrid numbers can
be made analogously as multiplications of algebraic expressions. Moreover,
(K,+, ·) is a non-commutative ring.
The Fibonacci numbers Fn are defined recursively by Fn = Fn−1 + Fn−2

for n ≥ 2 with initial terms F0 = 0, F1 = 1. The Lucas numbers Ln

are defined by Ln = Ln−1 + Ln−2 for n ≥ 2 with L0 = 2, L1 = 1. The
Fibonacci–Narayana numbers Nn are defined as follows Nn = Nn−1+Nn−3

for n ≥ 3 with N0 = 0, N1 = 1, N2 = 1, for details see [10].
For any variable quantity x, the Fibonacci polynomials Fn(x) are defined
as Fn(x) = x ·Fn−1(x)+Fn−2(x) for n ≥ 2 with F0(x) = 0, F1(x) = 1. The
Lucas polynomials Ln(x) are defined as Ln(x) = x · Ln−1(x) + Ln−2(x) for
n ≥ 2 with initial terms L0(x) = 2, L1(x) = x. The Fibonacci–Narayana
polynomialsNn(x) are defined by the formulaNn(x) = x·Nn−1(x)+Nn−3(x)
for n ≥ 3 with N0(x) = 0, N1(x) = 1, N2(x) = x.
For x = 1 the Fibonacci, Lucas and Fibonacci–Narayana polynomials
give the Fibonacci, Lucas and Fibonacci–Narayana numbers, respectively.
Properties of Fibonacci, Lucas and Fibonacci–Narayana polynomials can be
found in [5, 6, 7, 9, 14, 17, 23, 24], among others. In recent years, many
interesting papers investigating the properties of Narayana numbers and
Narayana polynomials have been published, see e.g. [8, 12, 15, 16, 18].
Fibonacci hybrid numbers were defined and studied in [19]. In [20], the
authors presented some properties of Fibonacci and Lucas hybrid numbers.
Fibonacci–Narayana hybrid numbers (with initial conditions 1, 1, 1) were
examined in [22].
The nth Fibonacci hybrid number FHn, the nth Lucas hybrid number

LHn and the nth Fibonacci–Narayana hybrid number are defined as

(3) FHn = Fn + iFn+1 + εFn+2 + hFn+3,

(4) LHn = Ln + iLn+1 + εLn+2 + hLn+3,

(5) NHn = Nn + iNn+1 + εNn+2 + hNn+3,

respectively.
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The hybrinomials are polynomials, which are a generalization of hybrid
numbers. The term „hybrinomials” was used for the first time in [21], where
Fibonacci and Lucas hybrinomials were studied. The Narayana polynomials
(with initial conditions 2, 3, 4) and Narayana hybrinomials were considered
in [17]. Some generalization of Fibonacci and Lucas hybrinomials was in-
troduced in [1]. The authors defined a class of hybrid polynomials (hybri-
nomials), which are so-called “r-Fibonacci hybrid polynomials and r-Lucas
hybrid polynomials of type s”.
We recall that for n ≥ 0 the Fibonacci and Lucas hybrinomials are defined
by

(6) FHn(x) = Fn(x) + iFn+1(x) + εFn+2(x) + hFn+3(x)

and

(7) LHn(x) = Ln(x) + iLn+1(x) + εLn+2(x) + hLn+3(x),

where Fn(x) is the nth Fibonacci polynomial, Ln(x) is the the nth Lucas
polynomial and i, ε, h are hybrid units which satisfy (1) and (2).
By analogy, for n ≥ 0 the Fibonacci–Narayana hybrinomials are defined
by

(8) NHn(x) = Nn(x) + iNn+1(x) + εNn+2(x) + hNn+3(x).

Using formulas (6)–(8), for x = 1 we obtain the Fibonacci hybrid num-
bers, the Lucas hybrid numbers and the Fibonacci–Narayana hybrid num-
bers, respectively.
In the literature we can find many generalizations of Fibonacci and Lucas
numbers, see for example the list in [2]. The authors generalized the defini-
tion of the Fibonacci numbers by changing the initial conditions, changing
the recurrence relation or changing distance between terms of a sequence.
One of the generalizations in the distance sense was introduced in [11] as
follows.
Let k ≥ 2, n ≥ 0 be integers. The generalized Fibonacci numbers F (k, n)
and generalized Lucas numbers L(k, n) were defined as

F (k, n) = n+ 1 for n = 0, 1, . . . , k − 1,

F (k, n) = F (k, n− 1) + F (k, n− k) for n ≥ k

and

L(k, n) = n+ 1 for n = 0, 1, . . . , 2k − 1,

L(k, n) = L(k, n− 1) + L(k, n− k) for n ≥ 2k.

Table 2 presents initial words of generalized Fibonacci numbers and gen-
eralized Lucas numbers for special cases of n and k.
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n 0 1 2 3 4 5 6 7 8 9 10
Fn 0 1 1 2 3 5 8 13 21 34 55

F (2, n) 1 2 3 5 8 13 21 34 55 89 144
Nn 0 1 1 1 2 3 4 6 9 13 19

F (3, n) 1 2 3 4 6 9 13 19 28 41 60
F (4, n) 1 2 3 4 5 7 10 14 19 26 36
F (5, n) 1 2 3 4 5 6 8 11 15 20 26
Ln 2 1 3 4 7 11 18 29 47 76 123

L(2, n) 1 2 3 4 7 11 18 29 47 76 123
L(3, n) 1 2 3 4 5 6 10 15 21 31 46
L(4, n) 1 2 3 4 5 6 7 8 13 19 26

Table 2. The values of F (k, n), L(k, n), Fn, Nn and Ln.

Note that for n ≥ 0 we have F (2, n) = Fn+2 and for n ≥ 2 holds L(2, n) =
Ln. Moreover, F (3, n) = Nn+3.
In [22], the authors defined F (k, n)-Fibonacci hybrid numbers FHk

n and
L(k, n)-Lucas hybrid numbers LHk

n as follows. Let n ≥ 0, k ≥ 2 be integers.
Then

FHk
n = F (k, n) + iF (k, n+ 1) + εF (k, n+ 2) + hF (k, n+ 3),(9)

LHk
n = L(k, n) + iL(k, n+ 1) + εL(k, n+ 2) + hL(k, n+ 3).(10)

For k = 2 we obtain FH2
n = FHn+2 and LH2

n = LHn. For k = 3 we have
FH3

n = NHn+3.
In [3], the authors introduced distance Fibonacci polynomials as a gen-
eralization of Fibonacci and Fibonacci–Narayana polynomials. Let k ≥ 2,
n ≥ 0 be integers. The distance Fibonacci polynomials fn(k, x) are given
by the following recurrence relation

fn(k, x) = xfn−1(k, x) + fn−k(k, x) for n ≥ k(11)

with initial conditions fn(k, x) = xn for n = 0, 1, . . . , k − 1.
Table 3 presents some distance Fibonacci polynomials fn(k, x) for special
values of k and n.

n 0 1 2 3 4 5 6
fn(2,x) 1 x x2+1 x3+2x x4+3x2+1 x5+4x3+3x x6+5x4+6x2+1
fn(3,x) 1 x x2 x3+1 x4+2x x5+3x2 x6+4x3+1
fn(4,x) 1 x x2 x3 x4+1 x5+2x x6+3x2

fn(5,x) 1 x x2 x3 x4 x5+1 x6+2x

Table 3. Distance Fibonacci polynomials fn(k, x).

Note that fn(2, x) = Fn+1(x) and fn(3, x) = Nn+1(x).
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The generalization of Fibonacci numbers and Fibonacci polynomials is
the motivation to generalize Fibonacci hybrinomials in terms of distance.
Based on the definition of distance Fibonacci polynomials we will define
distance Fibonacci hybrinomials in the following way.
For n ≥ 0 the distance Fibonacci hybrinomials are defined by

(12) fHk
n(x) = fn(k, x) + ifn+1(k, x) + εfn+2(k, x) + hfn+3(k, x),

where fn(k, x) is the nth distance Fibonacci polynomial and i, ε, h are
hybrid units which satisfy (1) and (2).
In the next section we will present some properties of these hybrinomials.

2. Main results. We start with the recurrence relations for distance Fi-
bonacci hybrinomials.

Theorem 1. Let k ≥ 2, n ≥ 0 be integers. For any variable quantity x, we
have

fHk
n(x) = x · fHk

n−1(x) + fHk
n−k(x) for n ≥ k

with

fHk
0 (x) = f0(k, x) + if1(k, x) + εf2(k, x) + hf3(k, x),

fHk
1 (x) = f1(k, x) + if2(k, x) + εf3(k, x) + hf4(k, x),

...

fHk
k−1(x) = fk−1(k, x) + ifk(k, x) + εfk+1(k, x) + hfk+2(k, x).

Proof. For an integer n, n ≥ k, using the definition of the distance Fi-
bonacci polynomials, we have

fHk
n(x) = fn(k,x)+ ifn+1(k,x)+εfn+2(k,x)+hfn+3(k,x)

= (x ·fn−1(k,x)+fn−k(k,x))+ i(x ·fn(k,x)+fn−k+1(k,x))

+ε(x ·fn+1(k,x)+fn−k+2(k,x))+h(x ·fn+2(k,x)+fn−k+3(k,x))

= x(fn−1(k,x)+ ifn(k,x)+εfn+1(k,x)+hfn+2(k,x))

+fn−k(k,x)+ ifn−k+1(k,x)+εfn−k+2(k,x)+hfn−k+3(k,x)

= x ·fHk
n−1(x)+fHk

n−k(x),

which ends the proof. □
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Theorem 2. Let n ≥ 0, k ≥ 2 be integers. The generating function of the
distance Fibonacci hybrinomials sequence {fHk

n(x)} has the following form

g(t)=
fHk

0 (x)+
(
fHk

1 (x)−x·fHk
0 (x)

)
t+· · ·+

(
fHk

k−1(x)−x·fHk
k−2(x)

)
tk−1

1−xt− tk
.

Proof. Assume that the generating function of the distance Fibonacci hy-
brinomials sequence {fHk

n(x)} has the form g(t) =
∑∞

n=0 fH
k
n(x)t

n. Then

g(t) = fHk
0 (x) + fHk

1 (x)t+ fHk
2 (x)t

2 + · · ·+ fHk
k−1(x)t

k−1

+ fHk
k (x)t

k + fHk
k+1(x)t

k+1 + fHk
k+2(x)t

k+2 + · · ·

Multiplying the above equality on both sides by −xt and then by −tk, we
obtain

−g(t)xt = −fHk
0 (x)xt− fHk

1 (x)xt
2 − fHk

2 (x)xt
3 − · · · − fHk

k−1(x)xt
k

− fHk
k (x)xt

k+1 − fHk
k+1(x)xt

k+2 − fHk
k+2(x)xt

k+3 + · · ·

−g(t)tk = −fHk
0 (x)t

k − fHk
1 (x)t

k+1 − fHk
2 (x)t

k+2 − · · ·

Adding the above three equalities, we get

g(t)(1− xt− tk) = fHk
0 (x) + fHk

1 (x)t+ fHk
2 (x)t

2 + · · ·+ fHk
k−1(x)t

k−1

− fHk
0 (x)xt− fHk

1 (x)xt
2 − fHk

2 (x)xt
3 − · · · − fHk

k−2(x)xt
k−1

= fHk
0 (x) +

(
fHk

1 (x)− x · fHk
0 (x)

)
t+ · · ·

+
(
fHk

k−1(x)− x · fHk
k−2(x)

)
tk−1

since fHk
n(x) = x · fHk

n−1(x) + fHk
n−k(x) for n ≥ k and the coefficients of

tn for n ≥ k are equal to zero. □

As a special case, we obtain the generating function of the Fibonacci
hybrinomials, given in [21].

Corollary 3. Let n ≥ 0 be an integer. The generating function of the
Fibonacci hybrinomials sequence {FHn(x)} has the following form

G(t) =
i+ εx+ h(x2 + 1) + (1 + ε+ hx)t

1− xt− t2
.

Proof. For k = 2 we have

g(t) =
fH2

0 (x) +
(
fH2

1 (x)− x · fH2
0 (x)

)
t

1− xt− t2
.
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Moreover,

fH2
0 (x) = f0(2, x) + if1(2, x) + εf2(2, x) + hf3(2, x)

= F1(x) + iF2(x) + εF3(x) + hF4(x)

= 1 + ix+ ε(x2 + 1) + h(x3 + 2x)

fH2
1 (x)− x · fH2

0 (x) = f1(2, x) + if2(2, x) + εf2(2, x) + hf4(2, x)

− x (f0(2, x) + if1(2, x) + εf2(2, x) + hf3(2, x))

= F2(x) + iF3(x) + εF4(x) + hF5(x)

− x (F1(x) + iF2(x) + εF3(x) + hF4(x))

= x+ i(x2 + 1) + ε(x3 + 2x) + h(x4 + 3x2 + 1)

− x
(
1 + ix+ ε(x2 + 1) + h(x3 + 2x)

)
= i+ εx+ h(x2 + 1).

g(t) =
∞∑
n=0

fH2
n(x)t

n = fH2
0 (x) + fH2

1 (x)t+ fH2
2 (x)t

2 + · · ·

= FH1(x) + FH2(x)t+ FH3(x)t
2 + · · ·

=
1

t
(−FH0(x) + FH0(x)) +

1

t

(
FH1(x)t+ FH2(x)t

2 + FH3(x)t
3 + · · ·

)
=

−FH0(x)

t
+

1

t

(
FH0(x) + FH1(x)t+ FH2(x)t

2 + FH3(x)t
3 + · · ·

)
=

−FH0(x)

t
+

1

t
·G(t),

where G(t) denotes the generating function of the Fibonacci hybrinomials
sequence {FHn(x)}. Then we have

G(t) = t · g(t) + FH0(x)

=
1 + ix+ ε(x2 + 1) + h(x3 + 2x) +

(
i+ εx+ h(x2 + 1)

)
t

1− xt− t2
· t

+ i+ εx+ h(x2 + 1)

=
1 + ix+ ε(x2 + 1) + h(x3 + 2x) +

(
i+ εx+ h(x2 + 1)

)
t

1− xt− t2
· t

+

(
i+ εx+ h(x2 + 1)

)
(1− xt− t2)

1− xt− t2

and after calculations the result follows. □
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In the same way we can prove the next result.

Corollary 4. Let n ≥ 0 be an integer. The generating function of the
Fibonacci–Narayana hybrinomials sequence {NHn(x)} has the following
form

γ(t) =
i+ εx+ hx2 + (1 + h)t+ (ε+ hx)t2

1− xt− t3
.

In [3], many properties of distance Fibonacci polynomials were given. We
will recall two of them which will be useful in the next theorems.

Theorem 5 ([3]). Let k ≥ 2, n ≥ 0, n ≥ k − 2 be integers. Then

x
n∑

i=0

fi(k, x) =
n+1∑

i=n+2−k

fi(k, x)− 1.

Theorem 6 ([3]). Let k ≥ 2, n ≥ 0 be integers. Then

fn(k, x) =
k−1∑
i=0

xifn−k−i(k, x) + xkfn−k(k, x).

Theorem 7. Let k ≥ 2, n ≥ 0, n ≥ k − 2 be integers. Then

x
n∑

i=0

fHk
i (x) =

n+1∑
i=n+2−k

fHk
i (x)

−
(
1 + i(1 + x) + ε(1 + x+ x2) + h(1 + x+ x2 + xf2(k, x))

)
.

(13)

Proof. For integers k ≥ 2, n ≥ 0 we have

x

n∑
i=0

fHk
i (x) = x

(
fHk

0 (x) + fHk
1 (x) + · · ·+ fHk

n(x)
)

= x (f0(k, x) + if1(k, x) + εf2(k, x) + hf3(k, x))

+ x (f1(k, x) + if2(k, x) + εf3(k, x) + hf4(k, x)) + · · ·
+ x (fn(k, x) + ifn+1(k, x) + εfn+2(k, x) + hfn+3(k, x))

= x
n∑

i=0

fi(k, x) + ix
n+1∑
i=1

fi(k, x) + εx
n+2∑
i=2

fi(k, x) + hx
n+3∑
i=3

fi(k, x)

= x
n∑

i=0

fi(k, x) + ix
n+1∑
i=0

fi(k, x) + εx
n+2∑
i=0

fi(k, x) + hx
n+3∑
i=0

fi(k, x)

− ixf0(k, x)− εxf0(k, x)− εxf1(k, x)

− hxf0(k, x)− hxf1(k, x)− hxf2(k, x).
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By Theorem 5 we get

x
n∑

i=0

fHk
i (x) =

n+1∑
i=n+2−k

fi(k, x)− 1 + i

(
n+2∑

i=n+3−k

fi(k, x)− 1

)

+ ε

(
n+3∑

i=n+4−k

fi(k, x)− 1

)
+ h

(
n+4∑

i=n+5−k

fi(k, x)− 1

)
− ix− εx− εx2 − hx− hx2 − hxf2(k, x)

=
n+1∑

i=n+2−k

(fi(k, x) + ifi+1(k, x) + εfi+2(k, x) + hfi+3(k, x))

− 1− i− ε− h− ix− εx− εx2 − hx− hx2 − hxf2(k, x)

=
n+1∑

i=n+2−k

fHk
i (x)−

(
1 + i(1 + x) + ε(1 + x+ x2)

+ h(1 + x+ x2 + xf2(k, x))
)
,

which ends the proof. □

Corollary 8. Let n ≥ 0 be an integer. Then

x

n∑
i=0

FHi(x) =

n+1∑
i=n

FHi(x)−
(
1 + i(1 + x) + ε(1 + x+ x2)

+ h(1 + x+ x2 + x(x2 + 1))
)

= FHn(x) + FHn+1(x)−
(
1 + i(1 + x) + ε(1 + x+ x2)

+ h(1 + 2x+ x2 + x3)
)
.

Corollary 9. Let n ≥ 1 be an integer. Then

x

n∑
i=0

NHi(x) =

n+1∑
i=n−1

NHi(x)−
(
1 + i(1 + x) + ε(1 + x+ x2)

+ h(1 + x+ x2 + x3)
)

= NHn−1(x) +NHn(x) +NHn+1(x)−
(
1 + i(1 + x) + ε(1 + x+ x2)

+ h(1 + x+ x2 + x3)
)
.

Theorem 10. Let k ≥ 2, n ≥ 0 be integers. Then

fHk
n(x) =

k−1∑
i=0

xifHk
n−k−i(x) + xkfHk

n−k(x).
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Proof. By Theorem 6 we get

fHk
n(x) = fn(k,x)+ ifn+1(k,x)+εfn+2(k,x)+hfn+3(k,x)

=

k−1∑
i=0

xifn−k−i(k,x)+xkfn−k(k,x)

+ i

(
k−1∑
i=0

xifn+1−k−i(k,x)+xkfn+1−k(k,x)

)

+ε

(
k−1∑
i=0

xifn+2−k−i(k,x)+xkfn+2−k(k,x)

)

+h

(
k−1∑
i=0

xifn+3−k−i(k,x)+xkfn+3−k(k,x)

)

=
k−1∑
i=0

xi (fn−k−i(k,x)+ ifn−k−i+1(k,x)+εfn−k−i+2(k,x)+hfn−k−i+3(k,x))

+xk (fn−k(k,x)+ ifn−k+1(k,x)+εfn−k+2(k,x)+hfn−k+3(k,x))

=
k−1∑
i=0

xifHk
n−k−i(x)+xkfHk

n−k(x),

which ends the proof. □

Concluding Remarks. The recurrences defining the generalized Fibonac-
ci numbers F (k, n) and the generalized Lucas numbers L(k, n) are of the
kth order. Hence, it is difficult to obtain the Binet formula for these se-
quences for any integer k. Applying some graph interpretation of distance
Fibonacci polynomials fn(k, x), the authors of [3] derived the direct for-
mula for fn(k, x). For integers k ≥ 2, n ≥ 0, x ≥ 1 the explicit closed form
expression for the distance Fibonacci polynomial is given by the following
formula

fn(k, x) =

⌊n
k
⌋∑

j=0

(
n− (k − 1)j

j

)
xn−kj .

Using this formula, one can give the direct formula for the nth distance Fi-
bonacci hybrinomial, but, importantly, only for integer x. It would be use-
ful to find the Binet formula for any x. Then some new identities, namely
Catalan’s, Cassini’s, d’Ocagne’s and Vajda’s for the distance Fibonacci hy-
brinomials could be found.
In [4], the authors gave a new generalization of Lucas polynomials in the
distance sense. Moreover, L(k, n)-Lucas hybrid numbers LHk

n were inves-
tigated in [22]. Our results obtained for distance Fibonacci hybrinomials
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may be a contribution to considerations about properties of distance Lucas
hybrinomials.
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